US009396325B2

a2 United States Patent

(10) Patent No.: US 9,396,325 B2

Kendall 45) Date of Patent: Jul. 19, 2016
(54) PROVISIONING AN APP ON A DEVICE AND (52) US.CL
IMPLEMENTING A KEYSTORE CPC ... GO6F 21/52 (2013.01); GO6F 21/53
(2013.01); GO6F 21/6281 (2013.01); HO4L
(71) Applicant: Mocana Corporation, San Francisco, 9/0863 (2013.01); HO4W 12/06 (2013.01);
CA (US) GO6F 2221/2149 (2013.01); HO4L 63/083
(2013.01); H04W 12/08 (2013.01)
(72) Inventor: H. Richard Kendall, North Liberty, IN (58) Field of Classification Search
(US) None
See application file for complete search history.
(73) Assignee: MOC.ANA CORPORATION, San (56) References Cited
Francisco, CA (US)
U.S. PATENT DOCUMENTS
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35 6,577,735 B1* 6/2003 Bharatc.cccocieenn. 380/286
U.S.C. 154(b) by 0 days. 6,959,382 B1* 10/2005 Kinnisetal. 713/170
(Continued)
(21) Appl. No.: 14/167,418
FOREIGN PATENT DOCUMENTS
(22) Filed: Jan. 29, 2014
WO WO 2011057393 5/2011
(65) Prior Publication Data OTHER PUBLICATIONS
Nukona App Center, “Everything You Need to Secure, Deploy and
US 2014/0208100 A1l Jul. 24, 2014 Manage Your Apps on Personal Devices”, https://www.nukona.com/
products, Jul. 7, 2011.
(Continued)
Related U.S. Application Data
(63) Continuation-in-part of application No. 14/046,687, Prlmary Examn?er—Hadl oughe
s . L Assistant Examiner — Malcolm Cribbs
filed on Oct. 4, 2013, which is a continuation-in-part of 74 A 4 i Rupak N
application No. 13/527,321, filed on Jun. 19, 2012, (74) Attorney, Agent, or Firm — Rupak Nag
now Pat. No. 8,769,305, which is a 57 ABSTRACT
continuation-in-part of application No. 13/309,387, A Kkeystore is installed on a mobile app where the keystore is
filed on Dec. 1,2011, now Pat. No. 8,812,868, which is created and provisioned on a server, such as an app wrapping
a continuation-in-part of application No. 13/052,973, server, under the control of an enterprise. A generic (non-
filed on Mar. 21, 2011, now Pat. No. 8,955,142. provisioned) wrapped app is installed on a device. The app
.. L prompts the user to enter a passphrase. When the user does
(60) Provisional application No. 61/758,486, filed on Jan. this, an app keystore is created. Ithas a user section and a table
30, 2013. of contents. The keystore files are hashed, creating “first”
keystore hash values. The first keystore hash values are stored
(31) Int.Cl in the TOC. The TOC is then hashed, creating a TOC hash
GO6F 21/62 (2013.01) value. The passphrase entered by the user is then combined
GO6F 21/52 (2013.01) with the TOC hash value. This creates a “first” master pass-
HO4L 9/08 (2006.01) phrase for the keystore. The keystore is then transmitted to the
Ho04W 12/06 (2009.01) device where it is installed in the generic (non-provisioned)
GO6F 21/53 (2013.01) wrapped app.
(Continued) 8 Claims, 20 Drawing Sheets
114
H
100 104 Aop Control
pp Contro
K’ 102 H 106 Security Program
App App Control
Provider App Security Program

US 9,396,325 B2

Page 2
(51) Int.ClL 2013/0024695 Al 1/2013 Kandrasheu et al.
11041 29/06 (2006.00) 20130318357 AL® 112013 Ababamotal 7131176
raham et al.
HO4W 12/08 (2009.01) 2014/0033193 Al* 1/2014 Palaniappan 717/173
. 2014/0040873 Al* 2/2014 Goldman 717/168
(56) References Cited 2014/0173700 Al 6/2014 Awan et al.
2014/0331297 Al 11/2014 Innes et al.
U.S. PATENT DOCUMENTS 2014/0337628 Al 11/2014 Amato
7,130,951 B1 10/2006 Christie et al. OTHER PUBLICATIONS
7,213,237 B2 5/2007 Kobayashi
7,243,230 B2 7/2007 England et al. Good Technology, Inc., “Taking Secure Steps to Enterprise Mobil-
;’géé’gg? g% lggggg k/}loGet ?}11 £ al ity—on the Most Popular Devices”, http://www.good.com/products,
,003, cGrath et al.
7,669,186 B2 2/2010 Nolan et al. Jul. 7, 2011, _
7,823,135 B2 10/2010 Horning et al. Lookout Mobile Security, https://www.mylookout.com/download,
7,877,613 B2 1/2011 Luo Apr. 2010.
7,895,580 Bl 22011 Nikolov Android Community, “Amazon App Store Lures You in With Free
7,941,700 B2 5/2011 Schlesinger et al. Apps, Makes You Stay if You Want to Keep Them”, hitp://
g’j ég’é 5(5) g% 3;58}3 Igugl? et:ll. androidcommunity.com/amazon-app-store-lures-you-in-with-free-
8’ 490’191 R2 72013 K(l)leelsrt et'al apps-makes-you-stay-if-you-want-to-keep-them-20110614/?utm__
8:656:501 B2 2/75014 Gna}%m ' medium.:referral&utmfsource:pulsenews, pp. 1-2, Jul. 13, 2011
8,818,897 B1* 82014 Slodkietal. ...ccovcvvee.... 705/51 International Search Report dated May 21, 2012 from International
2002/0069263 Al 6/2002 Sears et al. Application No. PCT/US 12/24655.
2003/0084298 Al* 5/2003 Messergesetal. ... 713/176 Written Opinion dated May 21, 2012 from International Application
2003/0196102 Al* 10/2003 McCarrollcceenenn. 713/194 No. PCT/US12/24655.
%882;8?;822 ﬁ} 2;3882 gfﬁrcl;l:; :ial U.S. Office Action dated May 10, 2013 from U.S. Appl. No.
2006/0156026 Al 7/2006 Utin 13/052.973. =
2006/0184927 Al* 82006 Deblaquiere etal. 717/168 U.S. Office Action dated Aug. 30, 2013 from U.S. Appl. No.
2006/0242406 Al 10/2006 Barde et al. 13/527,321.
2007/0050781 Al 3/2007 Furuichi et al. U.S. Office Action dated Oct. 24, 2013 from U.S. Appl. No.
2007/0118558 Al 5/2007 Kahandaliyanage 13/309,387.
%88;;8}5%22 ﬁ} gggg; groft ft ?tll'l U.S. Final Office Action dated Jan. 2, 2014 from U.S. Appl. No.
Tyant et al. 13/052,973
2007/0255943 Al 11/2007 Kern et al. T
2008/0046965 Al 2/2008 Wright et al. Notice of Allowance dated May 14, 2014 from U.S. Appl. No.
2009/0006868 Al 1/2009 Alkove et al. 13/052,973.
2009/0007081 Al 1/2009 Lau et al. Notice of Allowance dated May 15, 2014 from U.S. Appl. No.
2009/0048978 Al 2/2009 Ginter et al. 13/527,321.
2009/0292893 Al 11/2009 Henry et al. Notice of Allowance dated Jun. 8, 2014 from U.S. Appl. No.
2010/0057731 ALl* 3/2010 Kasai ...ccooeveevvvvninicanenn. 707/5 13/309,387.
2011/0145926 Al 6/2011 Dalcher et al. U.S. Office Action dated Jun. 25, 2015 from U.S. Appl. No.
Bt a1 ot g
5011/0282995 Al 11/2011 G:scs ez;};leta. U.S. Office Action dated Dec. 23, 2015 from U.S. Appl. No.
' 14/279,971.
%8}};835258? ﬁ} }égg“ gg:: Z: 2%: U.S. Final Office Action dated Jan. 4, 2016 from U.S. Appl. No.
2012/0167162 Al* 6/2012 Raleighetal.cccooee.... 726/1 14/046,687.
2012/0210443 Al 82012 Blaisdell et al.
2012/0331550 Al 12/2012 Rajetal. * cited by examiner

U.S. Patent Jul. 19, 2016 Sheet 1 of 20 US 9,396,325 B2

100 104
5 102 S 106
App App Control A
Provider App Security Program i

s
FIG. 1A S
114
H
App Control
110 Security Program
H
App 116
110 112 H
H 0 App
A
pp §

FIG. 1B

U.S. Patent Jul. 19, 2016 Sheet 2 of 20

US 9,396,325 B2

204

Policy Input K“J

202
Policy Manager —
A
Meta
Data 206
\222 g208
Local Policy Wrapper <
Policy
Update A
(runtime) 290 210
A A copy
4 A
- _ App
- Provider
gnli=
214 == | L4,
el S

U.S. Patent Jul. 19, 2016 Sheet 3 of 20 US 9,396,325 B2

Create copy of App -~ 302

Decapsulate App L~ 304

De-compile / modify

306
App T

Substitute App object code with | 308
program object code

Prepare secured App for execution ™ ~— 310

Re-sign secured App L~ 312
Delete un-secured App —~_ 314
End

FIG. 3

U.S. Patent Jul. 19, 2016 Sheet 4 of 20 US 9,396,325 B2

Enable governor to generate and 402
select policies

404
Service provider creates policies ™~

Generate security program code 406
based on policies

End

FIG. 4

U.S. Patent

506

Jul. 19, 2016

Sheet 5 of 20

on mobil

Alter behavior of App ,\/502

e device

A

4

on mobil

Execute secured App 504

e device

508

510

US 9,396,325 B2

512

Allow request
to pass

Enhance request

Obfuscate
response

Terminate App

N

/

Continue secured App 514
execution

End

FIG. 5

US 9,396,325 B2

Sheet 6 of 20

Jul. 19, 2016

U.S. Patent

Naw

04Sdl

SNOSJES

dnyjoeg

S82IAIRG

c09

9 OI4

Trigger Manager

vomw

3]l uoniuaq Avljod

- Peolumoq ™ siooweleq
>o__on_ /\l@N@
1ajjonuon
s 921A8(] :o:%m__a%
addel
A P " N zze
201n8(]
3l foijod 5
peg ™ alupuny va9
ﬁ%o 29
d uoneoidd
siajouered Aoiod aepd _m»_o__cmmo — liBjsuj/peojumoq umaam”_>><
S %x awnuNy Y19 @
909 AW mN_‘m S
uonuRQq
059 m\mw_w_mmm ﬂmm_ﬁw%wm ﬂv Jaddeipp uoneosiddy
Justusbeuels Ae
@ ﬁ AdV S3IRNIE vﬁﬁ 3p03 INf
~ lgpdwon Ao
018 HELIOQ Flod 210)S Juswobeuepy | | susuodwon
1T uotjealddy Anuep| pauspley
gos 1 |12 BF |5 019’ 028’
Z I
A
a sappjoy H
ojod MU ajelauas) | ewrruny e pajessueo |

U.S. Patent

Jul. 19, 2016 Sheet 7 of 20 US 9,396,325 B2

r—?OZa f703a (—7043

App | App | App e o o

Policy | Policy |Policy e o o

_702b “~703b ‘~704b

App Policy Enforcement Layer
706

Type2 Hypervisor Sandbox 708

0/S 10

FIG. 7

U.S. Patent Jul. 19, 2016 Sheet 8 of 20 US 9,396,325 B2

App Executes; ,\/802
Makes system calls

v s

Is there a Get default |_806

policy for app? policy
l Y
808
Apply policy to app [~
on device
A\
Determine what «/810
action to take
814 816 818 822
Y -~ Yy ~ Yy -~ Yy ~
Allow | Modify Obfuscate Terminate
request | request Response App

l 820
/_J

Continue secured
app execution

END

FIG. 8

U.S. Patent Jul. 19, 2016 Sheet 9 of 20 US 9,396,325 B2

Create copy of App -~ 902

A
Decapsulate App L—__ 904

Y

De-compile / modify
App

;

Substitute App object code with | 908
program object code

906

y

Create App template —_ 910

Y

Prepare secured App for execution - 912

v

Obfuscate / Personalize App - 914

l

Re-sign secured App L~ 916
\ 4
Delete un-secured App —.__ 918
y
End

FIG. 9

US 9,396,325 B2

Sheet 10 of 20

Jul. 19, 2016

U.S. Patent

Ll 'Old e :
0Lt .
2 80} e P00}
JYVHS AN
S3YNLY34
hep 9010by GOLOLy EOLOLN
| eee |wOm 00T €500/
b0L
N\
2011
e % & .VOO_‘/J
- e 7 7
ONIddvEM
POLOL 90L0L Q0L0} ®O0LO) LNANAS
¢ SIINAOW
«eo | 000 ag007 2500} ddv
9001
200} 2001

U.S. Patent

SERVER

DEVICE

Jul. 19, 2016 Sheet 11 of 20 US 9,396,325 B2
APP WRAP AND FIRST EXECUTION
BEGIN
1202
SERVER GENERATES ASYMMETRIC KEY PAIR(1) ~
(PRIVATE KEY(1), PUBLIC KEY(1))
¢ 1204
—~_/
TRANSMIT PUBLIC KEY(1) TO APP(DEVICE)
v
1206
RECEIVE PUBLIC KEY(1) FROM SERVER -
* 1208
USER LAUNCHES APP AND SET-UP WITH USER L~
PASSPHRASE
¢ 1210
GENERATE RECOVERY (RANDOM) L~/
PASSPHRASE
‘ 1212
ENCRYPT RECOVERY PASSPHRASE WITH T~/
PUBLIC KEY(1)
¢ 1214
STORE ENCRYPTED RECOVERY PASSPHRASE; L/

DELETE UNENCRYPTED VERSION OF RECOVERY
PASSPHRASE

END

FIG. 12

U.S. Patent

DEVICE

SERVER

Jul. 19, 2016 Sheet 12 of 20 US 9,396,325 B2
LOCKOUT/RECOVERY
BEGIN
v 1302
USER INITIATES RECOVERY REQUEST BY —~
CONTACTING CUSTOMER SUPPORT
1304
USER IS AUTHENTICATED BY CUSTOMER b
SUPPORT
v 1306
USER PROMPTED TO ENTER 1-TIME L
PASSPHRASE WHEN USER LAUNCHES APP
Y 1308
1-TIME PASSPHRASE ENCRYPTED USING PUBLIC ~ }—~_
KEY(1); DELETE UNENCRYPTED 1-TIME PASSPHRASE
v 1310
DISPLAY ENCRYPTED 1-TIME PASSPHRASE AND |~
ENCRYPTED RECOVERY PASSPHRASE
v 1312
USER COMMUNICATES ENCRYPTED PASSPHRASES |~_
TO CUSTOMER SUPPORT OR TRANSMITTED
ELECTRONICALLY TO SERVER
v 1314
DECRYPT BOTH PASSPHRASES USING PRIVATE | ~_
KEY(1)
! 1316
ENCRYPT THE RECOVERY PASSPHRASE USING THE |~_
1-TIME PASSPHRASE
v 1318
TRANSMIT ENCRYPTED RECOVERY KEY TO |~/
DEVICE
v

() FIG. 13

U.S. Patent

DEVICE

Jul. 19, 2016 Sheet 13 of 20 US 9,396,325 B2
1320
USER OPENS E-MAIL AND SEES LIST OF ~
WRAPPED APPS
v 1322
USER SELECTS LOCKED APP FROM LIST ot
1324
USER OPENS APP; APP RECEIVES ENCRYPTED |-
RECOVERY KEY AS INPUT PARAMETER
Y 1326
USER IS ALLOWED TO ENTER 1-TIME PASSPHRASE | ~_
USED TO DECRYPT RECOVERY PASSPHRASE
v 1328
UNLOCK KEYSTORE USING RECOVERY KEY: | —~_
DELETE RECOVERY KEY
Y 1330
DISPLAY STANDARD "CHANGE PASSWORD" SCREEN; [~
USER ENTERS NEW, LONG-TERM PASSPHRASE
y 1332
GENERATE NEW RECOVERY PASSPHRASE KEY: |~

ENCRYPT AND STORE PASSPHRASE

END

FIG. 13 (conT)

U.S. Patent Jul. 19, 2016 Sheet 14 of 20 US 9,396,325 B2

APP WRAP AND FIRST EXECUTION

BEGIN
[1402

SERVER GENERATES ASYMMETRIC KEY PAIR(1) ™
(PRIVATE KEY(1), PUBLIC KEY(1))
SERVER v 1404
-
TRANSMIT PUBLIC KEY(1) TO DEVICE
1406
RECEIVE PUBLIC KEY(1) FROM SERVER e
. 1408
USER LAUNCHES APP AND SET-UP WITHUSER |~/
PASSPHRASE
: 1410
USE PASSPHRASE TO GENERATE SYMMETRIC | ~_~
KEY
v 1412
GENERATE RECOVERY PASSPHRASE B
DEVICE T
1414
ENCRYPT KESTORE USING ~—/
RECOVERY PASSPHRASE
. 1416
ENCRYPT RECOVERY PASSPHRASE USING PUBLIC |~_/
KEY(1)
Y 1418
STORE ENCRYPTED RECOVERY PASSPHRASE [
Y 1420
DELETE UNENCRYPTED RECOVERY PASSPHRASE [~
END

FIG. 14

U.S. Patent Jul. 19, 2016 Sheet 15 of 20 US 9,396,325 B2

LOCKOUT / RECOVERY

BEGIN
- 1502

KEYSTORE ENCRYPTED WITH RECOVERY PASSPHRASE; [
RECOVERY PASSPHRASE ENCRYPTED WITH PUBLIC KEY(1)

v 1504
USER SELECTS NEW PASSPHRASE St
v 1506
GENERATE ONE-TIME ASYMMETRIC KEY PAIR(2) -~/
(PUBLIC KEY(2): PRIVATE KEY(2))
v 1508
ENCRYPT PRIVATE KEY(2) WITH NEW
PASSPHRASE
DEVICE
! 1510
ENCRYPT PUBLIC KEY(2) WITH PUBLIC KEY(1) Sl
v 1512
CREATE PACKAGE: L
ENCRYPTED PUBLIC KEY(2) AND ENCRYPTED RECOVERY
KEY
v 1514
TRANSMIT PACKAGE TO SERVER d
- !

O,

FIG. 15

U.S. Patent Jul. 19, 2016 Sheet 16 of 20 US 9,396,325 B2

— 1516

DECRYPT PACKAGE USING PRIVATE KEY(1); OBTAIN |~/

PUBLIC KEY(2) AND RECOVERY KEY
v 1518
SERVER ENCRYPT RECOVERY KEY WITH PUBLIC KEY(2)

v 1520

TRANSMIT ENCRYPTED RECOVERY KEY TO APP Sl
— v 1522

b~

USER ENTERS NEW PASSPHRASE

v 1524

DECRYPT PRIVATE KEY(2) USING NE -~/

PASSPHRASE

v 1526

b~

DEVICE UNLOCK RECOVERY KEY USING PRIVATE KEY(2)

v 1528

UNLOCK KEYSTORE USING RECOVERY KEY Ot
v 1530

DELETE ASYMMETRIC KEY PAIR(2) St
v 1532

GENERATE NEW SYMMETRIC KEY FROM NEW —~

PASSPHRASE

v 1534

"

ENCRYPT KEYSTORE WITH NEW SYMMETRIC KEY

END

FIG. 15 (conT)

U.S. Patent Jul. 19, 2016 Sheet 17 of 20 US 9,396,325 B2

BEGIN
1602

"GENERIC" WRAPPED APP INSTALLED ON DEVICE ~
v
APP PROMPTS USER TO SELECT PASSPHRASE; USER ENTERS | 1604
PASSPHRASE
v 1606
CREATE INITIAL KEYSTORE ON APP PROTECTION SERVER (SERVERA) |~
¥ 1608
INITIATE CHALLENGE/RESPONSE PROTOCOL -~
Y 1610
EMBED USER AND DEVICE-SPECIFIC DATA INTO USER SECTION OF
APP KEYSTORE
v 1612
HASH KEYSTORE FILES AND STORE IN TOC FILE ~
: 1614
HASH THE TOC FILE
L2 1616

COMBINE USER-SELECTED PASSPHRASE AND TOC FILE HASH TO CREATE |~
MASTER PASSPHRASE FOR KEYSTORE

3 1618
TRANSMIT KEYSTORE TO APP
L2 1620
INSTALL INTO WRAPPED APP -
L 1622
USER EXECUTE WRAPPED APP BY ENTERING USER-SELECTED PASSPHRASE |~
v 1624
WRAPPED APP HASHES USER'S TOC FILE IN KEYSTORE -
v
WRAPPED AP COMBINES PASSPHRASE (STEPS 104, 22)) WITH TOC FILE 1626

HASH TO CREATE MASTER PASSPHRASE

INCORRECT 1628

PASSPHRASE
OR TOC FILE PASSPHRASE UNLOCK

CORRUPTED KEYSTORE?
1632
WRAPPED APP HASHES KEYSTORE FILES: VERIFY THAT KEYSTORE FILES |~
HAVE NOT BEEN MODIFIED
Y 1634
USER IS ABLE TO USE WRAPPED APP IN NORMAL MANNER L

FIG. 16

U.S. Patent

US 9,396,325 B2

Jul. 19, 2016 Sheet 18 of 20
BEGIN
CREATE INITIALKEYSTOREON APP |~ 1702
PROTECTION SERVER
EMBED USER-SPECIFIC AND 1704
DEVICE-SPECIFIC DATA INTO B
USER-ALLOTTED SECTION OF APP
KEYSTORE
HASH KEYSTORE FILES; A
USE TO CREATE RECOVERY PASSPHRASE
APP DETECTS THAT USER HASNO | 1708
USER-SPECIFIC SECTION IN KEYSTORE
USER PERFORMS UNLOCK OPERATION 1710
TO RESTORE ACCESS TOKEYSTORE [
ON DEVICE
SEND RECOVERY PASSPHRASE, 1712
USER-SPECIFIC BLOCK FOR KEYSTORE, [
AND OTHER DATA TO DEVICE
USER UNLOCKS WRAPPED, LOCKED APP 1714
USING CHALLENGE/RESPONSE o
PROTOCOL
END

FIG. 17

US 9,396,325 B2

Sheet 19 of 20

Jul. 19, 2016

U.S. Patent

081

818l
ISYHHASSVd 43SV

918l
201 40 INTVA HSYH

S3ANTYA HSVH -

v1i8l
J01

V1vd 30IA3Q -

vV1va y3sn «

ci8l
NOILO3S ¥3SN

~
0181 FHOLSAIA

c08lL
\L
1
018l
\\L
0181
JHOLSAIM FHOLSAIA
> dSYHHASSYd
@310313S-d38n
—
8081
ddv
—
9081

U.S. Patent Jul. 19, 2016 Sheet 20 of 20 US 9,396,325 B2

1900
1906 »

/~1900
/1922 /1924 /1926 /1914
PROCESSOR(S) MEMORY FIXED DISK REMS)I\S/QBLE
A
1920
P v v v/ >
<« K 3 K A 3 »
1904 1910 1912 1930 1940
y / y / y / y / y /
NETWORK
DISPLAY KEYBOARD MOUSE SPEAKERS INTERFACE

FIG. 19B

US 9,396,325 B2

1
PROVISIONING AN APP ON A DEVICE AND
IMPLEMENTING A KEYSTORE

CROSS-REFERENCE TO RELATED
APPLICATIONS

This application claims priority to U.S. Provisional Appli-
cation No. 61/758,486, filed on Jan. 30, 2013, entitled “PRO-
VISIONING AN APP ON A DEVICE AND IMPLEMENT-
ING A KEYSTORE”. This application is also a
Continuation-in-Part which claims priority under 35 U.S.C.
§120 to pending U.S. patent application Ser. No. 14/046,687,
filedon Oct. 4,2013, entitled “SECURE UNLOCKING AND
RECOVERY OF A LOCKED WRAPPED APP ON A
MOBILE DEVICE”, which is a Continuation-in-Part claim-
ing priority under 35 U.S.C. §120 to pending U.S. patent
application Ser. No. 13/527,321, filed on Jun. 19, 2012,
entitled “SECURE EXECUTION OF UNSECURED APPS
ON A DEVICE”, which is a Continuation-in-Part claiming
priority under 35 U.S.C. §120 to pending U.S. patent appli-
cation Ser. No. 13/309,387, filed on Dec. 1, 2011, entitled
“SECURE EXECUTION OF UNSECURED APPS ON A
DEVICE,” which is a Continuation-in-Part of pending U.S.
patent application Ser. No. 13/052,973, filed on Mar. 21,
2011, entitled “SECURE EXECUTION OF UNSECURED
APPS ON A DEVICE,” all which are hereby incorporated by
reference in their entirety.

BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to software and
mobile devices. More specifically, it relates to preparing and
customizing an app to have specific behavior on a mobile
device.

2. Description of the Related Art

The overall objective is to enable employers to send out
policy updates for security-wrapped apps in the most efficient
and effective way. Employers also want efficient ways to
transmit an initial set of policies to employees and, con-
versely, employees would like to have an error-free and seam-
less way of receiving initial policies from employers.

Presently, there is no way for an employer to know what
precisely is being provisioned or to know specifics of how
provisioning is done for apps distributed to its employees. For
example, in one scenario employers may not know what is
being stored in its employees’ device keystores or where the
data in the keystores originated from.

Presently, files that are injected into an “app bundle” that is
security wrapped are verified by hashing the files and then
embedding the hash values into a library used by a mobile app
protection program. When the library starts and an app is
being security-wrapped, files that are injected are re-hashed
and compared to hash values stored in the library. If they
match, the files have not been tampered with and the security-
wrapping process continues.

One of the drawbacks of this approach of matching hash
values is that it does not provide a way to verify files that are
injected after the app has been security wrapped. Conse-
quently, any policy change (file modification) for a user
requires re-wrapping the app for the user with the new/up-
dated policies and then re-installing it on the device. It would
be desirable to be able to modify policy files after installing
the wrapped app and still be able to easily detect if the file
containing the policy has been tampered with. It would be
desirableto enable dynamic updates to auser’s policy without
having to re-security wrap an app. Related to this, it would

10

15

20

25

30

35

40

45

50

55

60

65

2

also be desirable to support different policies for different
users onthe “same installation of an app” on a specific device.

SUMMARY OF THE INVENTION

One aspect of the present invention is amethod of installing
a keystore in a mobile app where the keystore is created and
provisioned on a server, such as an app wrapping server,
under the control of an enterprise. A generic (non-provi-
sioned) wrapped app is installed on the device. The app
prompts the user to enter a passphrase. When the user does
this, an app keystore is created on the server. This keystore has
a user section and a table of contents (“TOC”). The keystore
is made up of files. These keystore files are hashed, creating
“first” keystore hash values. The first keystore hash values are
stored in the TOC. The TOC is then hashed, creating a TOC
hash value. The passphrase entered by the user is then com-
bined with the TOC hash value. This creates a “first” master
passphrase for the keystore. So far, all the activities regarding
the keystore have been on the app wrapping server. The key-
store is then transmitted to the device where it is installed in
the generic (non-provisioned) wrapped app.

Inone embodiment, the user and device specific policy files
are embedded into the user section of the keystore on the app
wrapping server. In another embodiment, when the user
executes the app on the device, the user section of the TOC in
the keystore is hashed. This creates a user section TOC hash
value. This hashing is done by the app. The passphrase is also
combined with the user section TOC hash value to create a
“second” master passphrase. The keystore is hashed again
thereby creating a second keystore hash value. The second
keystore hash value is compared with the first keystore hash
value. If the keystore hash values are the same, the user is able
to execute the wrapped app in a normal manner.

BRIEF DESCRIPTION OF THE DRAWINGS

References are made to the accompanying drawings,
which form a part of the description and in which are shown,
by way of illustration, specific embodiments of the present
invention:

FIG. 1A isablock diagram showing an overview of the app
control process of the present invention;

FIG. 1B is a block diagram showing an alternative embodi-
ment of an app control process of the present invention;

FIG. 2 is a block diagram showing components of an app
security program in accordance with one embodiment of the
present invention;

FIG. 3 is a flow diagram showing a process of making an
app secure before downloading it on to a device in accordance
with one embodiment of the present invention;

FIG. 4 is a flow diagram of a method performed in policy
manager in accordance with one embodiment;

FIG. 5 is a flow diagram showing a process of a security-
wrapped app executing on a handset or mobile device in
accordance with one embodiment;

FIG. 6 is a system architecture diagram of the app security
control system in accordance with one embodiment;

FIG. 7 is a block diagram of components for securing an
app on a device during execution in accordance with one
embodiment;

FIG. 8 is a flow diagram of a process of securing an app on
a device during execution of the app using integrated func-
tionality of the device in accordance with one embodiment;

FIG. 9 is a flow diagram of a process of making an app
secure before downloading it using a template, followed by
personalizing the app, in accordance with one embodiment of
the present invention;

US 9,396,325 B2

3

FIG. 10 is a block diagram showing an overview of the
process of segmenting an app through security wrapping in
accordance with one embodiment;

FIG. 11 is a block diagram of a mobile device and various
logical components and execution areas within the device in
accordance with one embodiment;

FIG. 12 is a flow diagram showing processes for security
wrapping an app and executing the app on a mobile device for
the first time that enables secure recovery from a subsequent
locked state in accordance with one embodiment;

FIG. 13 is a flow diagram showing processes of unlocking
and recovering from a locked app in accordance with one
embodiment;

FIG. 14 is a flow diagram showing other processes for
security wrapping an app and executing the app on a mobile
device for the first time in a way that enables secure recovery
from a locked state in accordance with one embodiment;

FIG. 15 is a flow diagram showing processes of unlocking
or recovering from a locked app in accordance with one
embodiment;

FIG. 16 is a flow diagram of a process for unlocking a
keystore and allowing a user to execute an app in accordance
with one embodiment of the present invention;

FIG. 17 is an alternative method of separating the opera-
tions of wrapping an app on one server and provisioning the
app on a different server in accordance with an alternative
embodiment;

FIG. 18 is a block diagram of a mobile device and an app
wrapping server in accordance with one embodiment; and

FIGS. 19A and 19B are block diagrams of a computing
system suitable for implementing various embodiments of
the present invention.

DETAILED DESCRIPTION OF THE INVENTION

Example embodiments of an application security process
and system are described. These examples and embodiments
are provided solely to add context and aid in the understand-
ing of the invention. Thus, it will be apparent to one skilled in
the art that the present invention may be practiced without
some or all of the specific details described herein. In other
instances, well-known concepts have not been described in
detail in order to avoid unnecessarily obscuring the present
invention. Other applications and examples are possible, such
that the following examples, illustrations, and contexts
should not be taken as definitive or limiting either in scope or
setting. Although these embodiments are described in suffi-
cient detail to enable one skilled in the art to practice the
invention, these examples, illustrations, and contexts are not
limiting, and other embodiments may be used and changes
may be made without departing from the spirit and scope of
the invention.

Methods and system for preventing device software appli-
cations from infecting or otherwise damaging a device, in
particular, a mobile device, are described in the various fig-
ures. These types of applications, used often on a variety of
mobile devices, such as smart phones, tablet computers, gam-
ing devices, and portable computing devices are commonly
referred to as “apps.” These apps may also be downloaded on
to non-mobile devices, such as TVs, computers, automobiles,
and other emerging smart device categories. Methods and
systems described are not intended to be limited to operation
on mobile devices. These device programs or apps have pro-
liferated and are now very prevalent. Currently, apps are
typically written in either Java or C. The methods and systems
described herein may be applied to apps written in either or to
apps written in other languages for different platforms. Most

10

15

20

25

30

35

40

45

50

55

60

65

4

apps, ifnotall, have to communicate with the mobile device’s
operating system to get a specific service that the app needs in
order to perform its intended function and this service is
usually only available from the operating system. A common
example of such a service used is GPS to get the location of
the device which the app may need. However, because of this
exposure, apps are a vulnerability for the device and pose a
security and privacy risk for the user. Companies want to be
able enforce a centralized policy to control and secure access
to its data and software. This is also true for end users (i.e.,
individuals, home users, and the like). It enables enterprise I'T
departments to maintain governance of corporate data. The
methods described below provide a centralized way to control
security with respect to apps that are downloaded onto mobile
devices, where the devices are either an employee’s personal
phone or an employer’s phone, so that those apps do not pose
a security threat. Various embodiments of the invention may
also be used by parents and individuals (i.e., in home or
non-work environments) to ensure that their personal mobile
devices are safe from malware and may also be used to apply
controls, such as on usage. Embodiments of the app control
software of the present invention may also be used for mobile
device data protection and back-up and for application-level
telemetry.

FIG. 1A isablock diagram showing an overview of the app
control process of the present invention. It is a generic
description of one process without being tied to a specific
configuration or environment. An app 102 is provided by app
provider 100 which can be any type of entity (individual,
software developer, employer, etc.). It is generally unpro-
tected and the only security surrounding it is provided by the
operating system. The only shield and checking done on how
it executes on the device once loaded is provided by the
operating system.

The present invention enables additional security of the
apps that is not provided by the device’s operating system. A
security application program 104 is applied to app 102. Or the
app 102 is input to program 104, which may be supplied by a
third-party app security provider. In one embodiment, secu-
rity application program 104 has a policy manager and a
policy wrapper which may be in different locations. They are
described in greater detail in FIG. 2. Once security program
104 has been applied to app 102, the app is wrapped with a
security layer so that the device is protected. It is shown as
secured app 106. In one embodiment, secured app 106 is then
downloaded onto a mobile device 108, such as a smart phone
or tablet computer, where it executes securely without risking
damage to device 108. Another benefit is that secured app 106
may also be managed by the company or other entity that is
providing the app to the user, such as an employer providing
the app to an employee. For example, if the user leaves the
company, the company may automatically delete the app and
any related data from the device. In another example, a parent
may be able to limit the apps used by another person (e.g., a
child) or to limit the amount of time, e¢.g., 10 minutes a day or
limit which Web sites may be accessed by an app. Or, a parent
is concerned that an app is leaking a child’s location to
unknown third parties. There may be numerous other
examples. As noted, FIG. 1A is intended to show the general
process of securing an app and downloading it onto a device.
Note that in this embodiment, app 102 is not made secure
from causing harm to the device after it is downloaded onto
the device, but before. In another embodiment, the app is
secured after it is downloaded onto the device, but before it
can interact with the operating system.

FIG. 1B is a block diagram showing an alternative embodi-
ment. An unsecured app 110 (also supplied by an app pro-

US 9,396,325 B2

5

vider) is downloaded onto mobile device 112. In this embodi-
ment, however, there may be a specially designed app on
device 112 that blocks the actual installation of unsecured app
110. The special app (not shown) redirects unsecured app 110
to an app security program 114. The unsecured app 110 is
wrapped in a security policy, the resulting app shown as
secured app 116. It is then downloaded and allowed to be
installed on device 112 by the special app. In this manner, an
individual or home user, for example, who wants to protect
her phone from security threats posed by apps, can have apps
made secure (wrapped) by a third-party service or by her
mobile phone carrier, to mention only two examples, before
they are downloaded on to her phone. It should be noted that
this security wrapping can be done to an app regardless of
where the user downloads the app from. It may also be noted
that in FIGS. 1A and 1B, the network and connections
between the components and software are shown generically.
The transmissions are primarily over the Internet (not shown)
but may also be within a private network or both.

FIG. 2 is a block diagram showing components of an app
security program in accordance with one embodiment of the
present invention. In one embodiment, the security program
has two major components, a policy manager and a policy
wrapper. A policy manager 202 accepts input from an admin-
istrator or other individual who is responsible for setting
security for the mobile device. The person may be referred to
as the governor since he is governing the security of the one or
more mobile devices. The security policy may be set using
various user interface screens. There are numerous examples
of policies, including geo-fencing (e.g., the app can only be
used in a building) and others. The service provider or the
entity providing the app security program may also provide
default policy and security settings which may be useful for
home users. Examples of policy settings are described below.
Policy input 204 is inputted into policy manager 202. Policy
manager 202 takes the input/settings from the governor and
creates policies or meta-data 206. The format or form of
meta-data 206 can vary. They essentially reflect the policy
settings from the governor.

Metadata (policies) 206 may be used as input to a policy
wrapper 208. In one embodiment, this component of the
program takes the policies and uses them to secure an app 210
by wrapping it. Wrapper 208 receives an app 210 from a
handheld device 212. In one embodiment, wrapper 208
receives a copy of an app 210 instead of the original app 214
that was downloaded onto phone 212 (see FIG. 1B above).
Here the handheld device 212 user attempts to download an
unsecured app 216 from an app provider 218. In the scenario
in described in FIG. 1A, it may operate on the app itself
instead of a copy. This may be the case where a market place
or app store offers customers a secured version of the app
along with an unsecured version (or only offer the secured
version). A secured version 220 (security-wrapped version) is
returned from policy wrapper 208 to device 212.

Metadata 206 may also be used to update a local policy file
(an existing policy that is already on the device). A local
policy file is used to update policy parameters residing on
device 212. For example, in the case of “geofencing” (i.e.,
restricting use of an app to an certain physical areas) it is
likely that the GPS locations controlled by the governor will
change over time. When such a change occurs, the new poli-
cies can be applied in two different ways. One is to generate
anew policy and apply it to the original app (i.e., wrap the app
with the new policy). Another way is to allow dynamic con-
figuration based on a local policy data file with the “variable”
part of the policy encrypted/signed inside it. For example, an

20

25

30

40

45

55

6

IT person may want the ability to override a configuration on
adevice directly through an IT app residing on the device for
diagnostic purposes.

In one embodiment policies have two components: a fixed
partand a variable part. The fixed part is the content described
in the policy file (e.g., “protect the GPS at certain times of
day”). The variable part typically is provided by the governor
through a console (e.g. “what are the times when the GPS
should be protected?”). The variable part can change without
applying a new policy.

Policy designers can choose to forego the variable compo-
nent of the policy and basically “embed” all data or content
statically in the policy file. In this case, the console does not
have any way to customize the policy.

If the policy designer chooses to include some variable
component in the policy, when changes are made to the vari-
able data (on the console), a new data file could be sent to the
device to reflect the latest changes. Such a file would be
encrypted/signed (to prevent a malicious app circumventing
the policy), downloaded to the device, and used by the app
security code on the device to apply the new data to the
appropriate policy.

Such changes and updates may be done by local policy
update component 222 at runtime. This component creates
updated policy parameters on device 212. Thereafter,
wrapped app 220 will use the updated policy parameters.

In one embodiment, policy manager 202 and policy wrap-
per 208 are components in the same app security program and
may operate on the same computer. In other embodiments,
the manager and wrapper components may be on separate
computers. For example, the policy manager 202 may beon a
server at one site and the policy wrapper 208 may be on a
computer at another site and may be managed by a different
entity or the same entity. Collectively the manager and wrap-
per form the app security program which, in one embodiment,
is operated by a security service provider. It may also be
provided by an enterprise, such as a company, employer,
business partner, and the like, or by a mobile phone carrier.

FIG. 3 is a flow diagram showing a process of making an
app secure before downloading it on to a device in accordance
with one embodiment of the present invention. At step 302 a
copy or clone of the app that is to be secured is made on the
device. In one embodiment, this may be done on the mobile
device itself or may be done off the device, for example, on
components on the Internet, in the cloud, on an enterprise’s
server or on a carrier server. The user may be an individual, an
employee of a company or other entity. As is known in the
field, an app may be obtained in a number of ways, most
typically from an app store or an app market, or directly from
the app developer or provider or in any suitable manner. By
making a copy, the original app is preserved giving the user an
option to use either the secured or unsecured version and also
protects the user’s ability to use the app if something goes
wrong with the app control process. Note that in one embodi-
ment, the app is not yet downloaded on to the phone. In one
embodiment, the methods described below are performed on
separate computing devices. In another embodiment, the pro-
cess may be performed on a mobile device, but the app is only
executed on the device after the process is complete and the
app has been made secure.

At step 304 the app is decapsulated. Most, if not all, apps
have digital signatures signed by the author/developer. At step
304, as part of the decapsulation, the digital signature is
removed from the app. This may be done using techniques
known in the art. Decrypting the app may also be performed
atthis step. These and other steps provide the core object code
of'the app which may now be operated on by the app control

US 9,396,325 B2

7

program. The nature and specifics of this operation may
depend on the mobile device’s operating system.

There are several examples of operating systems for smart
phones such as iOS (for the iPhone), Android (used on hand-
sets from various manufacturers), Windows Mobile 7, Web
O/S, Palm, and others. At step 306, the core object code app
may be either disassembled or decompiled to obtain the
executable object code. For example, it can be either “native
code” (CPU instructions) or bytecode (virtual machine
instructions, such as Java or .Net). In one embodiment, this
may be more of a modification process if the device runs i0S
where the disassembly is closer to a process of locating and
substituting certain links and terms. However, in general, the
disassembly process to obtain the object code of an app after
it has been decapsulated may be done using techniques
known in the art, such as using disassemblers.

At step 308 the app object code is augmented with object
code from the app security program. For example, this object
code may include class files which are replaced with class
files from the security program. The object code generally
provides an interface to the mobile device operating system.
The app control security program object code is derived, in
part, from the policy/meta-data described above. In the case
ot 108, the operation is different in that a ‘locate and substi-
tute’ process occurs rather than an object code replacement.
This takes into consideration an interrupt approach that i0S’s
uses. Generally, the app security program goes through the
assembly language code. The specific items located are Soft-
ware Interrupts (SW1Is) within the object code and which are
replaced with a branch to an app control security program
layer which may then determine what further actions to take,
such as making the request, enhancing the results, and others,
as described below.

At step 310, after substitution of the object code (or sub-
stitutions of SWIs) has been made, the app security program
prepares the security wrapped app for execution on the
mobile device. The object code substituted into the app by the
security program generally provides a bridge or connection
between the app and the mobile device operating system. The
security program class files may be described as wrapping
around the operating system class files. The app security
program class files are generated based on the policies created
earlier (by input from the governor). The app is essentially
re-wired for execution on the handset. It is re-wired to use the
app security program layer in addition to the security pro-
vided by the mobile device operating system layer. That is,
the secured app may still be subject to the security provisions
of'the operating system. In one embodiment, certain cosmetic
changes may also be made to the app, such as changing the
icon for the app to reflect that it is secured. By doing this, the
user can be sure that when the app icon appears on the handset
screen that the secured version of the app will be executed.
The app has now essentially been re-factored or re-pro-
grammed by the security program.

At step 312 the app is signed with a new key, for example,
with the key of the service provider or the key of the enterprise
providing the secured app. The re-factored, secured version
of the app is returned to the handset device. In another
embodiment, the app is wrapped with the security layer on the
phone. At step 314, in one embodiment, the original, unse-
cured copy of the app is deleted from the handset device. This
may be done by the secured version of the app once it is
downloaded onto the handset. In other embodiments, this is
not done and both versions remain on the mobile device. At
this stage the process is complete.

FIG. 4 is a flow diagram of a method performed in policy
manager 202 in accordance with one embodiment. At step

10

15

20

25

30

35

40

45

50

55

60

65

8

402 the governor or other security policy individual is enabled
to define, generate, and create security policies. This may be
anetwork administrator for an enterprise deciding a vast array
of mobile device security policies for hundreds of employees
using dozens of enterprise apps (specifically for work) that
may be downloaded on hundreds or thousands of mobile
devices. On the other end of the spectrum, it may be a parent
who is setting security policy for three or four apps down-
loaded by her child on a new mobile device. Other examples
include preventing or squashing a gaming app using GPS,
preventing an app from using a microphone on the device to
record or eavesdrop on a conversation, among many others. In
either case, the governor may take into consideration the
category of the app, the type and nature of app, the author, the
age-appropriateness, and numerous other factors. For
example, has the same author written any other apps that may
have been classified as malware or posed a security threat to
the device. It may determine whether there are other apps by
the same author. It is at this stage that the governor decides
which rules to apply for each app. In one embodiment, this is
done off-line by the governor. That is, it may be done using
user interfaces on a home computer or on an enterprise net-
work computer used by an administrator where security tem-
plates provided by the security program service provider (es-
sentially default templates) may be used or very specific rules
may be set using the templates.

At step 404 the security data input at step 402 is used by the
app control security program to create the actual policies. At
step 406 the app control security program object code is
generated based on the input from the governor regarding
security policies created at step 404. The governor or service
provider may also update existing security policies if needed.
As described above, the object code may be used to enhance
certain original object code obtained from the disassembled
app. The enhancement code is inserted to adjust security and
privacy settings for an app in order to protect the enterprise
and end user. The original app’s behavior is altered which
allows the governor to control how the app behaves. For
example, if an app stores sensitive account information in the
clear (i.e., un-encrypted), the behavior could be changed so
that all information the app creates is stored in encrypted form
and which can only be accessed by that app given that the key
to the stored, persistent data would be unique to the app. In
many instances the enhancement code can improve the apps
performance since the code is optimized for a particular use
scenario.

FIG. 5 is a flow diagram showing a process of a security-
wrapped app executing on a handset or mobile device in
accordance with one embodiment. At step 502 the behavior of
the app when the app executes or immediately before it
executes on the device is altered or modified. For example,
behavior modification may include authentication during app
initialization; e.g. smart/CAC card, or password challenge.
Some apps, as originally designed, may not require a pass-
word for security, however, a secured version of an app which
has been modified may require that the user enter a password.
At step 504 the secured app executes on the mobile device by
the user activating it (e.g., tapping on the icon if the device has
a touch screen). Upon execution of the app, in one embodi-
ment, control can take one of four options. As is known in the
art, when an app executes, it makes calls or requests to the
device operating system in order to carry out its functions. In
many cases these calls may be harmless or pose no significant
security threat to the phone or device. If this is the case, the
call may be allowed to pass to the operating system as shown
in step 506. Here the call is made to the device operating
system and the app executes in a normal manner.

US 9,396,325 B2

9

If the security layer or wrapper around the app detects that
the app is making a request that may pose a security threat to
the device, the app security layer may enhance or modify the
request before it is passed to the operating system or other
software or hardware component in the phone. This is shown
at step 508. In one embodiment, the governor determines
which calls are permissible by examining the one or more
policies. For example, the governor may determine that all
data should be saved in encrypted form. In another example,
the governor may decide that only a select group of trusted
apps should have data on a soldier’s GPS coordinate. In one
embodiment, there is no runtime logic to determine what is
safe, a potential threat, or an actual threat; it is essentially
pre-declared by the governor in the policy created at step 404
above. In another embodiment, there may be some runtime
logic. For example, an app may be trying to send out expen-
sive SMS text messages. The app control program may deter-
mine this and block the app from sending more than a certain
number of text messages, for example, it may limit it to
transmission of one message. The enhancement may be add-
ing something new, such as a password requirement. In
another example, if the call is to save data on the mobile
device memory, the secured app may actually back up the data
to a storage area in the cloud or on the Internet (i.e., off the
device). In another example, the data related to the call may be
encrypted.

At step 510 the secured app may determine that the call is
an actual threat and should be dealt with in a more severe
manner than at step 508. For example, it may have decided
that based on the policy for an app, that if a camera on the
device is accessed while in a secure building (e.g., the Pen-
tagon), the app should immediately be terminated. Merely
enhancing the request may not be sufficient in this case. At
step 510, the request may not be allowed to proceed to the
operating system or any other component of the device. How-
ever, in one embodiment, a response is returned to the app, but
that response is intentionally not accurate or correct. It is
essentially an obfuscated response. For example, it may be a
GPS coordinate that is not the actual physical coordinate of
the device (e.g., the device is in California, but the GPS
coordinate that is returned to the app is a coordinate in
Nebraska). This may be desirable when apps are used by
children. Other examples may be returning bad or garbled
data results if an app that should only run within a restrictive
environment (e.g., a secure office area) is determined to be
running outside that environment (e.g., at home). In this
example, the app may be partially crippled so that the app can
only access unclassified data and wherein classified informa-
tionis nullified. In another example, when a user is attempting
to paste or copy sensitive data from a classified app to a
non-classified app, the app control program may change the
copy of the data that is being pasted to garbage or essentially
make it meaningless. After either steps 506, 508, or 510 have
completed, the security-wrapped app continues execution on
the mobile device at step 514.

At step 512 the security layer around the app has deter-
mined that the call being made by the app or that the app
execution behavior in general poses too high a security threat
level to the mobile device. In this extreme case, the security
layer decides to terminate execution of the app and/or delete
the app. For example, the app may be using too many
resources on the phone, such as bandwidth, or is making too
many high-risk calls to the operating system thereby over-
exposing the mobile device. In this case, the app can simply
be deleted from the phone or the app may be terminated. The
user may not be able to re-execute it or re-install it. For
example, an employee may not install that app again on the

20

25

30

35

40

45

55

10

company phone because it was exposing sensitive company
data. Or it may be determined that an app is secretly collecting
data on the phone or installing malware.

FIG. 6 is a system architecture diagram of the app security
control system in accordance with one embodiment. A trigger
manager component 602 handles two events, one for gener-
ating a new policy 604 and another for updating policy param-
eters 606. Such events can be triggered by various systems.
For example, a console administrator or governor might apply
anew policy to all devices (a manual operation). Or a network
monitoring application, after detecting suspicious traffic
originating from a device (or app), could push a new policy
that would prevent a user/device/app from accessing network
resources (an example of an automated operation). The vari-
ous systems or entities that have the authority to change/
update polices, do so through the trigger manager 602.

New policy output 604 is input to a policy definition file
608 which may be generated at runtime and may include
various types of code and extensions, for example, specific to
the app control service provider, or to the app/user/device the
policy applies to. Policy definition file 608 is input to a policy
compiler 610 which has two outputs. One output is a wrapper
definition file 612. This file is input to an app wrapper com-
ponent 614. App wrapper component 614 is responsible for
generating secure app by injecting custom binary code (native
or bytecode) into an app, downloaded directly, for example,
from an app store. Or the app could be an app the user
downloaded on to his device, and then uploaded to an “App-
Control” server.

App wrapper component 614 may have three inputs: apps
from one or more app stores 616, certificate key management
data from identity management component 618, and hard-
ened components 620. Key management data is used to tie the
identities of the user, device, and the app, and ensure that any
operation subject to policy control can be tied to a specific
user/device/app. This also ensures that a wrapped application
can only be run on a specific device to prevent a malicious app
from circumventing policies and hardened components 620
(for example “Device security framework™). The output from
app wrapper 614 is a wrapped app 622 which is downloaded
orinstalled onto mobile device 624 via the device’s controller
626. Device controller 626 responsibilities include: down-
load app from the app wrapper; ensure that app running on the
devices are appropriately wrapped apps (e.g., app wrapped
for userl should not be installed/run on device for user2);
report list/version of installed applications to allow the man-
agement console to control policies for each device/user/
application; and download policy parameters when appropri-
ate. Wrapped app 622 resides on device 624 coupled with
policy parameters 628.

Returning now to policy compiler 610, the other output is
a runtime policy definition file 630. This file is input to a
runtime policy compiler 632 which also accepts as input
policy parameters 606 (specified by the management console,
or other subsystems). Output from compiler 632 is a device
runtime policy file 634. This file 634 is downloaded onto
device 624 as shown as policy parameters 628, and is used to
customize the policies applied to wrapped app 622.

Described below are various use cases and capabilities of
the app control security program of the present invention. One
use case involves the separation of work life and personal life
on a mobile phone. There are apps for the user’s personal use
and apps that the user’s employer (or a business partner of the
employer) may have provided and the apps operate on the
same phone, which is often the user’s personal phone. The
governor who determines security of the apps that need to be
secured on the user’s phone may block copy/paste operations

US 9,396,325 B2

11

between apps (such as e-mail apps). The governor may set
policies for the work-related apps that perform selective
wipes of apps and associated files. User location-based poli-
cies may also control where certain apps may execute.
Examples of levels of protection because of malware are
denying access to contacts, denying transmission of SMS
without consent, and the like.

Another example of a use case is app control. Using the
present invention, white and black listing of apps may be
implemented, as well as full deletion of apps according to the
policies set by a governor. An app may be ‘sandboxed’ to
protect the other apps, software, and hardware of the device.
Other capabilities may include identity-based control of apps
or services and highly granular control over app behavior.
Trojan identification is another use case that can be imple-
mented with the app security program. For example, each app
and content may be encrypted to prevent rogue apps from
gaining access to and stealing confidential data on the phone.
The security program may also be able to identify anomalous
system call behavior of an app to identity malicious Trojan
apps that act outside of their published intent.

Another use case is back-up and recovery of app data in
which IT security administrators and governors have data
revision control and can implement app and device content
migration through back-up and restore operations. In another
use case is network traffic monitoring. The app on the mobile
device may be brought under the visibility of existing enter-
prise IDS/IPS/Web filtering infrastructure to allow for inspec-
tion and control of app communications. The app security
program can also integrate with third-party DNS services,
such as Symantec’s DNS service to identify malware. All app
communications may be encrypted, including communica-
tions at the mobile phone service provider. Other use cases
include session continuity, consumer privacy (e.g., GPS
obfuscation, implementing safe DNSs), and intercepting pay-
ment/transaction messages from the mobile device (i.e., oper-
ating in the middle of mobile commerce streams).

In one embodiment, the app security service is offered by a
third-party service provider, for example, to make apps used
by end-users or individuals (i.e., users not associated with an
employer or enterprise). For example, a parent may want to
obfuscate the GPS of a child’s phone because the parent does
not want a social network site, such as Facebook, to know
where the child is, essentially disabling GPS. In another
embodiment, an app store, operated by a wireless phone
carrier (e.g., Verizon, AT&T) may offer a secured app for an
extra charge or premium. A customer of the carrier can down-
load the secured app from the marketplace or online store
instead of the unsecured version by paying an extra amount.
In another embodiment, an enterprise may have its own app
store for its employees, partners, and the like, where users can
only download secured versions of the apps (which may be
referred to as “hard” apps). These apps may have many of the
security features described above as defined by a governor
(security administrator) at the enterprise, such as blocking
copying and pasting e-mail or corporate data, killing an app
from the user’s phone if the user leaves the company, and so
on. A mobile phone carrier’s DNS can typically access any
site, but the app security program can block a mobile device
browser so that it can access only a safe DNS (e.g., Syman-
tec’s DNS) from where only safe Web sites may be accessed.
In another embodiment, the app security program provider
can work with the mobile device manufacturer to incorporate
the app security program or functionality into the hardware
and software operations of the device. In this embodiment,
described below, a user can download an unsecured app and
make is secured on the phone or device itself before executing

10

15

20

25

30

35

40

45

50

55

60

65

12

and does not have to access a third-party service to have the
app secured or ensure that the app is secured before being
downloaded onto the device.

As can be seen from various embodiments described
above, the security of the mobile device extends beyond the
device itself and is applied directly to the apps that are down-
loaded onto the device. Companies and other entities are able
to take advantage of apps more freely without having to worry
about the security risks, such as data leakage or malware
infection of the company’s enterprise I'T system. Companies
can maintain governance of its corporate data.

In another aspect of device security and app execution, a
user downloads an unsecured app and has it execute with a
policy enforced by an engine pre-deployed on the device. In
this manner the app is essentially secured on the device (using
a policy on the device) after which the security-enforced app
can execute. In this aspect of device security and app execu-
tion, a third-party app security provider may integrate or
pre-deploy its services with existing services (e.g., firmware)
offered by the device manufacturer. As such, this embodiment
may be referred to as a pre-deployment embodiment. That is,
the provider and the device manufacturer work together so
that the device (made by the manufacturer) contains software
and/or firmware that interacts or communicates with the
device operating system and is integrated in the device. In this
embodiment, the device manufacturer can inform (e.g.,
advertise to) potential customers that its device, such as a
smart phone, is more secure with respect to app execution
than a competitor’s device. The customer still downloads
apps in a familiar or conventional manner, where the apps are
likely to be unsecured (i.e., unwrapped), and when the app
executes on the device, it is essentially secured and is signifi-
cantly less likely to cause damage to the device.

In reference to components and modules from the embodi-
ments described above (i.e., post-deployment embodiments),
this aspect of the invention utilizes what may be described as
the equivalent of policy manager 202. That is, the functions of
policy manager 202 are implemented in the pre-deployment
embodiment using other modules and techniques. In one
embodiment, policy wrapper 208 described above may not be
needed on the device because the security enforcement is
done via interpreting or compiling a policy by an enforcement
layer. In some devices, such as mobile devices, there is often
a Type 2 hypervisor or app “sandbox” operating above the
operating system software. This conventional hypervisor or
sandbox either allows an app to execute or does not; it pro-
vides a somewhat limited binary functionality with respect to
app security. In certain aspects of the present invention,
described below, another type of hypervisor operates on top
of the conventional Type 2 hypervisor, where logic enabling
more than mere ‘allow or do-not-allow’ type functionality is
performed.

Normally apps operate by interacting within a sandbox
layer above the operating system of the device. This is to
ensure that the apps do not interfere with each other during
execution. In 108, the apps utilize shared object files and
execution goes through an SWI instruction. The sandbox is
part of the iOS operating system.

As is known in the art, one or more apps may execute in the
sandbox (or similar virtual environment) on the device at any
given time. In one embodiment of the present invention, an
app policy enforcement layer or engine is implemented
between the apps and the sandbox. FIG. 7 is a block diagram
showing a structure for apps security on a device in accor-
dance with one embodiment of the present invention. This
structure has modules and components that reside on the
device, e.g., a smart phone, tablet, or TV. Shown are several

US 9,396,325 B2

13

apps, where each box 702a, 704a, 706a . . . represents the
software for each app residing on the device’s internal
memory (not shown). Attached to each app is a policy 7025,
704b,706b As noted above, some apps may not have a
policy. However, in most cases, policy manager 202 has per-
formed its functions, that is, creating and managing policies
for the user’s apps. Since the policies are on the device (or
they are downloaded onto the device with the app), the policy
manager’s functions are done. The policies for each app, or
generic policies for the user, are already on the device. How-
ever, as described below, there is a process to ensure that the
app has an associated policy before it is allowed to execute or
perform system calls. App policy enforcement layer 706 con-
tains logic to determine what should be done each time a
system call is made by an app. When an app is downloaded
onto the device by the user, the app does not have to be
previously wrapped or secured; it may be unwrapped, as a
vast majority currently are. Itis also possible that a secured or
wrapped app may be downloaded and the same concepts and
methods described below can apply.

As noted, app policy enforcement layer 706 is a software
engine that resides on the device, but may be supplied and
created by an app control service provider and integrated onto
the device by the device manufacturer. The logic performed
by layer 706 is described in FIG. 8. Operating under layer 706
is a conventional Type 2 sandbox 708 and the operating sys-
tem software 710.

Enforcement layer 706 determines how an app should
behave when it executes. It examines the policies to deter-
mine what actions should be taken when it executes. Enforce-
ment layer 706 may not have any knowledge of how an app
should behave with respect to security of the device. That is,
layer 706 does not know what the app is allowed or permitted
to do on the device. In one embodiment, the only way it can
know is by examining the policy associated with the app. In
one embodiment, layer 706 interprets the policy, comprised
of computer code, when the app makes a system call or
request. Upon this interpretation, layer 706 determines how
the app may execute or behave on the device. In one embodi-
ment, after the policy has been interpreted by layer or engine
706, one of four actions can be taken. These four actions are
the same as those described above. They are shown again in
FIG. 8 in the context of security wrapping an app on the
device (pre-deployment embodiment).

FIG. 8 is a flow diagram of a process of applying a security
policy to an app before execution on a device in accordance
with one embodiment. At step 802 an app that is already
executing makes a system call to the device operating system.
In one embodiment, the steps of applying the policy and
determining what security actions to take occur only after the
app makes an actual call to the device operating system. At
step 804 enforcement layer 706 checks whether there is a
policy for the app that is executing. This may be done with
assistance from the policy manager. An example of a policy is
provided below. If there is no policy for the app, a default
policy for the app or user is obtained from device memory. A
default policy is set by the user or the device manufacturer.

Ifthere is apolicy, control goes to step 808 where the policy
is applied to the app on the device. In the described embodi-
ment, the policy is interpreted by engine 706. Once applied,
enforcement engine 706 knows how the app can behave, that
is, it knows what it can allow the app to do. In another
embodiment, enforcement layer 706 may compile the policy
instead of interpreting it. For example, it may perform a
‘just-in-time’ compile operation, generating code on the spot,
for the app where the code is unique for the app. As is known
in the art, JIT compiling is generally more efficient than

10

15

20

25

30

35

40

45

50

55

60

65

14

interpreting, and typically can be done only if allowed by the
operating system. Typically, dynamic loading of code is
allowed only to privileged operating system components. In
another embodiment, sandbox 710 (Type 2 hypervisor) can
also be protected by collapsing sandbox 708 into operating
system 710.

After step 808, enforcement layer 706 applies its logic and
determines what action to take with respect to app behavior or
what action the app can take at step 810. The call may be no
threat to the device and may be allowed to simply pass to the
operating system as shown in step 814. From there control
goes to step 820 where the app continues execution using app
policy enforcement layer 706. If enforcement layer 706
detects that the app is making a request that may pose a
security threat to the device, enforcement layer may enhance
or modify the actual request before it is passed to the operat-
ing system or other software or hardware component in the
phone as shown in step 816. After the request is modified, it is
allowed to pass to the operating system and control goes to
step 814 (and then to step 820). The enforcement layer 706
may determine that the call by the app is an actual threat and
should be dealt with in a more severe manner than at step 816.
For example, the request may not be allowed to be sent to the
operating system or any other component of the device. How-
ever, in one embodiment, even though the request may be
blocked, a response is still returned to the app, but that
response is intentionally not accurate or correct as shown in
step 818. It is an obfuscated or deliberately misleading
response. If enforcement layer 706 has determined that the
call being made by the app, or that the app execution behavior
in general, poses too high a security risk to the device, the app
is terminated or deleted at step 822 by enforcement layer 706.
The process ends after step 822 (i.e., control does not go to
step 820). Control then goes to step 820. From step 820
control goes back to step 810 where enforcement layer 706
determines what action to take.

This embodiment may be referred to as a container
approach, in that a container wraps around the app. Here the
container is part of sandbox 708. In other systems presently in
use, there is essentially a big container and all apps must be
written and must execute in the single container (e.g., Good
Tech). In order to execute out of the container, the app must
leave the container. In the described embodiment of the
present invention, two different apps, one secured and the
other unsecured, can run in enforcement layer 706 at the same
time.

As noted, when an app is downloaded, one or more policies
may be downloaded with the app. A call or request is made to
a policy manager to look up policy data needed for that
particular app. In the described embodiment, the app is not
modified.

As is evident in the various embodiments, a pre-deploy-
ment scenario and the other embodiments, app policies are a
key element in ensuring the security of the device. An
example of a policy may be that if two apps are from the same
author and, therefore, have the same private key, and both
apps attempt to execute at the same time, certain actions may
be taken, such as preventing the two apps from communicat-
ing with each other or sharing information. One app may be a
contact manager and the other may be an SMS texting app.
Because they have the same signature, the two apps can
essentially “see” each other and collude. Itis possible that two
or more apps from the same author that are executing at the
same time can share data and cause harm to the device, even
though each app may be benign if executed separately. The
policy may prevent apps signed with the same private key
from exchanging data in sandbox 708, which operates below

US 9,396,325 B2

15

enforcement layer 706. In this respect, the described embodi-
ment of the present invention is improving operations of
sandbox 708. For example, the present invention may elimi-
nate or reduce the need for binary operations, such as black-
listing and whitelisting of apps, and the like.

It is worth noting that the service provider or the entity
providing security for the apps performs all the functions
described above, that is, it does all the steps necessary for
securing the app on the mobile device from beginning (receiv-
ing an original, unwrapped app) to end (producing a security-
wrapped app on the mobile device) for each and every app.
For example, the service provider receives the original app,
strips it, parses it, re-compiles it, and re-signs it and then puts
it back in app storage. During the processing, the security
provider, for example, locates the relevant or correct classes
and substitutes different classes. It essentially performs this
same substitution or injection of classes for all copies of the
same apps, regardless of the specific needs of the user. Given
the volume of apps being developed and downloaded (mea-
suring in the millions or billions over a period of years),
performing this class substitution for each copy of the same
app would take a significant amount of processing and power.
It would be desirable to facilitate the process of security
wrapping the app and make the process more efficient. One
way to do this is to determine what can be done for all app and
what needs to be done to the apps for specific users.

A significant amount of processing can be done before an
app is personalized for a particular user. For example, with
reference to FIG. 3, steps 312 and 314 can be performed after
the app has been personalized, customized or obfuscated (as
described below), and this modification can be done to an app
template to which an active user policy may be applied or
merged, or other functions can be performed, such as random-
ization.

FIG. 9 is a flow diagram of a process similar to the process
described in FIG. 3. Steps 902 to 908 are, in one embodiment,
the same as steps 302 to 308, but are repeated here for com-
pleteness. Itis a flow diagram showing a process of making an
app secure before downloading it using a template, followed
by personalizing the app, in accordance with one embodiment
of the present invention.

At step 902 a copy or clone of the app that is to be secured
is made on the device. By making a copy, the original app is
preserved giving the user an option to use either the secured or
unsecured version and also protects the user’s ability to use
the app if something goes wrong with the app control process.

At step 904 the app is decapsulated. Most, if not all, apps
have digital signatures signed by the author/developer. At step
904, as part of the decapsulation, the digital signature is
removed from the app. This may be done using techniques
known in the art. These and other steps provide the core object
code of the app which may now be operated on by the app
control program. At step 906, the core object code app may be
either disassembled or decompiled to obtain the executable
object code. For example, it can be either “native code” (CPU
instructions) or bytecode (virtual machine instructions, such
as Java or .Net).

At step 908 the app object code is augmented with object
code from the app security program. For example, this object
code may include class files which are replaced with class
files from the security program. The object code generally
provides an interface to the mobile device operating system.
Generally, the app security program goes through the assem-
bly language code. The specific items located are Software
Interrupts (SWIs) within the object code and which are
replaced with a branch to an app control security program

20

35

40

45

16

layer which may then determine what further actions to take,
such as making the request, enhancing the results, and others,
as described below.

At step 910 an app template is created. An app template
may be described as a version of the app code that contains,
for example, markers or placeholders, that are used to cus-
tomize the app based on an active user policy or may be used
to obfuscate the app code. An app need only have one app
template (it may be referred to as “templatizing the app”).
With some (possibly most) apps, an app template is nearly
complete. That is, it will typically be missing only a few items
needed to be a fully functioning, security-wrapped app. This
template is then modified based on the user’s or a group’s
specific policy requirements. By customizing an app tem-
plate, much of the processing needed for security wrapping an
app may only be done once. For example, steps 902 to 910
may only be done one time by the app security provider. The
markers are used to locate places in the app code where, for
example, substitutions can be made to customize the app.

At step 912, after substitution of the object code (or sub-
stitutions of SWIs) has been made, the app security program
prepares the security wrapped app for execution on the
mobile device. The object code substituted into the app by the
security program generally provides a bridge or connection
between the app and the mobile device operating system. The
security program class files may be described as wrapping
around the operating system class files. The app security
program class files are generated based on the policies created
earlier (by input from the governor). The app is essentially
re-wired for execution on the handset. It is re-wired to use the
app security program layer in addition to the security pro-
vided by the mobile device operating system layer.

At step 914 the app is personalized or obfuscated by turn-
ing markers ON, assuming that the markers are OFF when the
template for the app is created. In one embodiment, content in
anactive policy for a user is merged into the template. [fa user
policy indicates a certain requirement and there is a relevant
marker for that requirement, the marker may be turned ON or
made active. If the policy is not active, then the marker is
unaffected. For example, a GPS marker may be enabled or
made active if a user’s policy indicates so, otherwise it is left
OFF. Other features may not have a marker, such as a copy/
paste requirement which may be required in all apps.

In other embodiments, markers or placeholders may be
used to make an app random. For example, special data may
be stored in different places in an app for different users so
that that special data is not always expected to be in one
location. In another example, they may be used to generate
code in different patterns for different users. In this manner, if
one customized app is hacked or infected, the hacker cannot
necessarily do the same to other apps. It enables another layer
of security in the security-wrapping process. In many cases,
the obfuscation or personalization process may only consume
insignificant processing time given that the app template is
almost complete and turning markers ON or doing any other
functions to obfuscate the code at this stage will likely take
little processing time. As such, much of the processing for
security wrapping an app is done once to create the app
template and the remaining steps are done for individual users
or groups of users.

At step 916 the app is signed with a new key, for example,
with the key of the service provider or the key of the enterprise
providing the secured app. The re-factored, secured version
of the app is returned to the handset device. In another
embodiment, the app is wrapped with the security layer on the
phone. At step 918, in one embodiment, the original, unse-
cured copy of the app is deleted from the handset device. This

US 9,396,325 B2

17

may be done by the secured version of the app once it is
downloaded onto the handset. In other embodiments, this is
not done and both versions remain on the mobile device. At
this stage the process is complete. In this manner, a blueprint
of'an app is made through the creation of an app template, but
this blueprint is a flexible blueprint and may be modified in
small but important ways that allows for customizing the app
for a particular user and, thus, creating different apps for
different users, where each app is security wrapped as
described above.

In another aspect of the present invention, security wrap-
ping an app enables another capability or feature: data integ-
rity by preventing break point insertions. Various embodi-
ments allow fine grain control of access to information. This
capability enables an app to be segmented automatically dur-
ing the app wrapping process. The result is segmenting an app
into multiple logical components, including “trusted execu-
tion modules” within the app. A wrapped app is bundled or
packaged in a manner to include multiple logical modules and
components some of which are trusted execution modules,
also referred to as trusted applets. These modules/compo-
nents may be loaded into different parts of the mobile device
when the app is first executed.

FIG. 10 is a block diagram showing an overview of the
process of segmenting an app through security wrapping in
accordance with one embodiment. An app 1002 is made up of
multiple app software modules, shown as essentially a mono-
lithic block 1004. These modules and components may be of
various sizes and execute various functions within the app.
App 1002 goes through the security wrapping process
described above and shown in FIG. 10 by arrow 1006. Secu-
rity wrapping 1006 causes app 1002 to be segmented into a
plurality of modules/components 1008a, 10085, 1008¢ . . .
and trusted modules or applets 1010a, 10105, 1010¢
Modules/components 1008a-c . . . execute in the operating
system of the mobile device and trusted applets 1010a-d . . .
execute in a trusted execution environment. This configura-
tion is described in greater detail below.

As described above, there are generally two modes of
security wrapping an app. One may be described as “pre-
loaded,” where the app security engine is pre-loaded on to the
mobile device by the device manufacturer. In this mode, any
app that is downloaded onto the device is automatically
wrapped at download time and is done transparent to the user.
In another mode, referred to as “after-market,” the mobile
device user or another party decides to wrap an app once ithas
been downloaded. The actual security wrapping is done by a
third-party service or by the app provider, but not by an engine
on the device itself as in the case of the “pre-loaded” scenario.

Various embodiments of the multiple, logical component
bundling for creating an app and data integrity implementa-
tion described herein may be applied to both “pre-loaded”
and “after market” modes.

With the present invention, even if a device is rooted (e.g.,
infected with malware) and the operating environment is
hostile, embodiments of the present invention are still able to
protect the app and data on the device.

One feature of mobile devices is that there is typically an
operating environment on the device that is more secure than
the primary or general environment where most of the device
operations take place. This more secure environment may be
referred to as a trusted execution environment or TEE. Mod-
ules that execute in the TEE are protected from being scruti-
nized and data stored there cannot be examined or tampered
by external entities. TEE memory cannot be looked at by any
external processes or processes running in the operating sys-
tem. Generally, code that runs in TEE cannot have break

10

40

45

55

18

points inserted. As such, it would be desirable to protect app
code by having at least certain modules or code of the app
execute in TEE so that the app remains secure and so its
execution does not harm or cause further damage to the
device. A hacker should not be able to insert break points into
app code and, thereby, obtain sensitive information such as
passwords, login data, and the like.

FIG. 11 is a block diagram of a mobile device and various
logical components and execution areas within the device in
accordance with one embodiment. A device 1102 has an
operating system environment 1104 and a TEE 1106. Envi-
ronment 1104 may be characterized generally as the normal
or conventional operating environment for the device. Itis the
area controlled primarily by the operating system (in many
cases, a “rich” operating system as currently commonly run
on smart phones and tablets). Operating system environment
1104 provides an execution space for modules/components
1008a-c As described above, these are the regular
modules of app 1002. TEE 1106 is a trusted and secure
execution space where trusted applets 1010a-d . . . are able to
execute and where secret or confidential data, shown as block
1108, may be stored without external processes being able to
observe or examine the data. By having trusted applets
1010a-d . . . execute in TEE 1106, hackers cannot insert break
points into app 1002.

It is possible for an app developer to take steps to ensure
that a hacker cannot insert break points into the app code.
However, this is difficult to do if the hacker has the patience
and resources to study and closely examine app execution on
a mobile device. In addition, many app developers may not
have the expertise or time to incorporate this level of security
provision, thereby making it difficult for determined hackers
from inserting break points. As noted, methods of the present
invention can ensure that these security provisions are in
place and bundle the app code in a correct and automated
manner.

Uses and implementations of the present invention are best
shown through an example. A video game app may have a
module within the app code for the game that protects, for
example, aplayer’s high score. This module may be treated as
a trusted applet that executes in the TEE and the high score
may be stored in TEE memory. Building this customized,
trusted applet, which requires coordination among different
components of the app, is typically a complex task. Methods
of'the present invention address creating the trusted applet for
the high score and loading it into the TEE. The trusted applet
is likely one among several others that are bundled together
with regular modules of the app code. These bundled regular
modules and trusted applets collectively comprise the video
game app.

Methods of the present invention address building the
trusted applet for execution in TEE correctly. Other portions
of the app run in the o/S environment, often in a rich O/S
environment. In this respect, the resulting app may be referred
to as a hybrid “TEE-Rich O/S” app. As noted, the security
wrapped app is automatically generated on the mobile device.

In one embodiment, the automatic app wrapping process
includes inserting Digital Rights Management (DRM) fea-
tures into the app. Referring again to FIG. 11, DRM features
and a key share are shown in block 1110. Presently, when an
app developer wants to incorporate DRM into an app, the app
is typically developed from the “ground up” to have DRM
features. DRM features are generally not added to an app after
initial development; it is often difficult to essentially retro-fit
anapp or any code with DRM features. Experience has shown
that apps that have strong DRM features often provide poor,
or less than desirable, user experiences. On the other hand,

US 9,396,325 B2

19

apps that have positive or strong user experiences are, in part,
that way because they are unencumbered by DRM features.

Embodiments of the present invention of logical compo-
nent bundling for creating an app also enable insertion of
DRM features into an app. Thus, an app that has a good user
experience can have certain DRM features added. In one
embodiment, the process uses split-key share.

A data lease feature may also be used to cause a key share
to expire after a certain amount of time (essentially a tempo-
rary lease of the key share). It is generally not desirable to
allow a key store to persist over a long period of time, as it is
more likely that over time it will be compromised from a
longer exposure to hackers. This DRM split key runs and is
stored inthe TEE. As such, it cannot be copied out or observed
by external processes. This also prevents “group force” of the
key share. By storing the key share in TEE, it cannot be cloned
nor can the device be reversed engineered to get access to the
data.

In one embodiment, user access and other DRM-related
information are added to the header or to the beginning of
each file or document in the app. This is done in a manner that
is transparent to the app (that is, the app is unaware that its
files are being modified). In one embodiment, it is done dur-
ing the app wrapping process. The data that is added may
include identifiers of individuals or groups who have one or
more degrees or types of access to the file or document.

In one embodiment, the information added to the file or
document may be in the following pseudo-format: a user/set
of users+a device/set of devices+app identifier. There can be
various levels of DRM constraints within each of these vari-
ables. For example, the data may allow an Employee A to use
one device, Device A, to access, for example, three company
Apps anda PDF reader. Or, a group of five specific employees
can use any one of three devices to access all the company’s
apps. In another example, an employee assigned or desig-
nated to be ina particular group (e.g., a division of a company)
may use any mobile device in the company to access a specific
set of apps (e.g., apps that are needed only by employees in
that division or group). In this scenario, a specialized suite of
apps can be used by any employee in a particular division, for
example, and can use any mobile device in the company to
access any app from that suite of apps. Of course, many
different scenarios are possible, some of which may not have
any limitations on which devices can be used (i.e., there are
only restrictions regarding employees/users and apps) or may
not have any limitations on employees/users (e.g., there are
only limitations on devices and apps). In this manner, a secu-
rity administrator at an enterprise can choose which apps,
devices, and users can use. This goes beyond the conventional
one-to-one pairing between one or more security features and
one device normally associated with DRM capabilities.

In one embodiment, these DRM-type features are imple-
mented in a manner that is transparent to the app. That is, the
app is essentially unaltered and executes in its normal fashion.
However, the app security wrapping process enables or
injects these DRM features and the ability to control the level
of security of the app.

Another aspect of the present invention is providing pro-
cesses for a user to unlock or recover a locked security-
wrapped app on a mobile device. Apps that are security
wrapped are passphrase protected. The embodiments
described herein relate to when a user has either forgotten a
passphrase for unlocking an app or the app has automatically
locked because oftoo many unsuccessful login attempts (e.g.,
the user has entered the wrong passphrase more than three
times). In this case, the app security keystore on the device
becomes locked. As described below, the keystore is

5

10

15

20

25

30

35

40

45

50

55

60

65

20

encrypted with a recovery key which is only in an encrypted
form on the device and cannot be decrypted or otherwise
accessed by the user. As such, the user cannot unlock the
keystore on the device and therefore is not able to unlock the
app. Methods and systems below describe ways to access a
locked app, whether on a mobile, nomadic, or stationary
device using a recovery mechanism that is highly secure in all
communications between the mobile device and the service
provider server pursuant to a protocol described below. At the
same time the recovery mechanism is easy for the end user to
carry out. This combination of high-end security and a desir-
able user experience that is clean, efficient, and user-friendly,
especially when using a keypad on a mobile device, has not
been achieved in the mobile app security space.

As described above, the service provider providing the
mobile app wrapping and security has a server also referred to
as console. The mobile device stores and runs the wrapped
app and is generally able to communicate via the Internet with
the console or via secure socket connection. The app supplier,
for example, the end user’s employer or the end user’s finan-
cial institution, provides the app to the end user (the app may
also be supplied directly from the service provider) and also
plays a role in the unlock and recovery mechanism of the
present invention.

FIG. 12 is a flow diagram showing processes for security
wrapping an app and executing the app on a mobile device for
the first time that enables secure recovery from a subsequent
locked state in accordance with one embodiment. These are
steps that occur during app wrap time on a service provider
server, also referred to as a console, and on a user mobile
device when the app is first executed. They set up the envi-
ronment to allow for a secure recovery from app lockout with
a desirable user experience. Prior to the first step, an instruc-
tion to wrap an app has been received at the server. The app is
not yet on the mobile device.

At step 1202, in response to the instruction, the server
generates a first asymmetric key pair consisting of a private
key and a public key (referred to herein as private key(1) and
publickey(1)). Public key(1)is packaged with or made part of
the wrapped app. At step 1204 the app together with public
key(1) is transmitted to the mobile device via an Internet or
other network connection or over a secure sockets layer if
available.

At step 1206 the device receives the wrapped app and with
it public key(1) from the server. At step 1208 the user
launches the app for the first time and, in the process, selects
a long-term passphrase for accessing the app. The user may
see a screen on the device asking the user to set-up the pass-
phrase and other settings when the user first launches the app.
Upon completion of setting up the app and passphrase on the
device, at step 1210 the mobile device randomly generates a
recovery passphrase using conventional components on the
device. At step 1212 this recovery passphrase is encrypted
using public key(1) sent with the wrapped app from the
server. It is useful to note here that the recovery passphrase is
now locked and can only be unlocked using private key(1)
which is only on the server. At step 1214 the device or,
specifically, the app, stores the encrypted recovery pass-
phrase. At step 1216, the unencrypted version of the recovery
passphrase is deleted from memory so that it is no longer
available. At this stage the app has been wrapped on the
server, transmitted to the mobile device, and ‘set-up’ by the
user on the device, specifically a long-term passphrase has
been established.

FIG. 13 is a flow diagram showing processes of unlocking
and recovering from a locked app in accordance with one
embodiment. The user has been locked out of the app (e.g., by

US 9,396,325 B2

21

forgetting the passphrase, making too many failed attempts to
login, etc.) and needs to unlock the app and establish a new
long-term passphrase. As noted, the reason the app is locked
is because the keystore (for the app security software) is
locked with the recovery key and there is no unencrypted key
onthe device to unlock it. Thus, an unencrypted version of the
recovery key is needed to unlock the keystore, thereby recov-
ering from the locked app. As noted above, this is accom-
plished in the present invention through secure data transmis-
sions and in a manner that is easy and intuitive for the user.
Recall from FIG. 12, that the device has in memory the
recovery passphrase but it is locked using public key(1).

At step 1302 the user, locked out of the app, begins the
recovery process, in one embodiment, by contacting support
requesting passphrase reset. Support may at the user’s
employer, financial institution, or generally any entity that
provides the secured app. In one embodiment, the phone
number for user support may be put in the app when the app
is provisioned for end users. In other embodiments, the user
may contact support via other means, such as e-mail or SMS.
At step 1304 the user is authenticated by customer support.
This may be done in any manner suitable to the app provider.
In one embodiment, it is over the telephone so that the end
user can answer security questions or verify identity in a
conventional manner. The service provider (the entity provid-
ing the app wrapping software) is generally not involved in
authenticating or verifying the end user.

At step 1306 the end user opens or launches the wrapped
app and at the “App is locked” display (or similar display) on
the mobile device the user is prompted to enter a new, one-
time, long-term passphrase chosen by the user and validated
against complexity rules. In allowing the user to select this
one-time passphrase, it is more likely it will be remembered
by the user. This is in contrast to conventional recovery
mechanisms in which the service provider generates a ran-
dom passphrase which the user is required to remember (e.g.,
write down, copy and paste, etc.) and enter at a later stage.
This process is especially advantageous in the context of a
mobile device with a small touch-screen keyboard because
entering information on such a device tends to be burdensome
and error-prone because of the lack of a full-size keyboard.
By allowing a user to select a passphrase, the user can select
one that is easier to enter (e.g., less toggling between alpha-
betic characters and numbers) compared to a randomly gen-
erated passphrase. The user enters the one-time passphrase
into a text entry box on the screen. At step 1308 the one-time
passphrase is encrypted using public key(1). This locked
version of the one-time passphrase is stored in device
memory and the unencrypted version of the passphrase is
deleted from the device so that it can longer be accessed by
any entity.

At step 1310 the encrypted one-time passphrase and the
encrypted recovery passphrase are displayed on the mobile
device so that the user can view then. At step 1312 both locked
versions of the passphrases are transmitted to user or cus-
tomer support over the telephone or electronically (e.g.,
secure sockets or e-mail). The passphrases are encrypted and
transmitted to the app provider in a secure manner. [t is useful
to note here that the keystore for the app on the device is still
locked and cannot yet be opened by the user.

Steps 1302 to 1312 occur on the mobile device or are taken
by the mobile device user. At step 1314 execution switches to
the server. The server uses private key(1) to decrypt the locked
one-time passphrase and the locked recovery passphrase
(both of which were encrypted using public key(1)). At step
1316 the now unlocked recovery passphrase is once again
encrypted using the now unlocked one-time passphrase that

10

15

20

25

30

35

40

45

50

55

60

65

22

the user entered on the device at step 1306. At step 1318 the
encrypted recovery passphrase is transmitted from the service
provider console or server as an attachment to an e-mail to the
mobile device, more specifically to the app. In another
embodiment, other communication mechanisms, such as
secure sockets, may be used.

At step 1320 the user opens the e-mail and, in one embodi-
ment, is presented with a list of wrapped apps. In another
embodiment, the user is presented with an app having a
unique file extension to eliminate any ambiguity so that a list
is not required (and the user does not have to select the right
app from the list). In another embodiment, the unique file
extension embodiment can be used with a list for a group or
federation of apps. At step 1322 the user selects the locked
app from the list. At step 1324 the user opens the selected app
and the app receives the encrypted recovery key as an input
parameter. By receiving the key as a parameter, the app knows
it is in the process of recovering from lock mode. At step 1326
the user is prompted to enter the one-time passphrase that he
selected at step 1306. This passphrase should be easy to recall
and enter by the user. This passphrase is used to unlock the
recovery passphrase. Recall that at step 1316 the recovery
passphrase was encrypted using the one-time passphrase.

At step 1328 the keystore for the app is unlocked using the
recovery key on the device. Once the keystore is unlocked, the
app can execute in a normal manner. At this stage the recovery
key, no longer needed, is deleted from the mobile device.

At step 1330 a standard display asking the user to “Change
Password” or something similar is shown and the user selects
and enters a new, long-term passphrase which is used going
forward to unlock the app. At step 1332, after the user has
selected a new, long-term passphrase, a new recovery pass-
phrase is generated randomly on the device. It is encrypted
using public key(1) and stored on the device. The same asym-
metric key pair(1), described at step 1202, may be used. At
this stage the process of unlocking and recovering from a
locked, security-wrapped app is complete.

FIG. 14 is a flow diagram showing other processes for
security wrapping an app and executing the app on a mobile
device for the first time in a way that enables secure recovery
from a locked state in accordance with one embodiment. As
with FIG. 12, these are steps that occur during app wrap time
on, for example, a service provider server or console, and on
a user mobile device when the app is first executed. These
steps set up the environment that subsequently enables a
secure recovery from app lockout while keeping a desirable
user experience. Prior to the first step, an instruction to wrap
anapp has beenreceived at the server. The app is notyet on the
mobile device.

At step 1402 the server generates a first asymmetric key
pair, referred to hereafter as key pair(1), comprised of private
key(1) and public key(1). This is done when the server wraps
the app. At step 1404 the public key(1) is transmitted to the
mobile device from the server. It is sent as part of the wrapped
app when the server sends the wrapped app to the device. At
step 1406 the device receives the wrapped app together with
public key(1) from the server. At step 1408 the device user
launches the app for the first time and configures the app,
including selecting a long-term passphrase for the app.

At step 1410 the passphrase selected by the user is used to
derive a symmetric key. The device also generates a random
recovery passphrase which, in one embodiment, is not gen-
erated from the user-selected passphrase but solely by the
device at step 1412. At step 1414 the master symmetric key
that protects the app keystore that is on the device is encrypted
using a symmetric key derived from the device generated
recovery passphrase. The recovery key is then encrypted

US 9,396,325 B2

23

using public key(1) at step 1416 and is stored on the device at
step 1418. The unencrypted version of the recovery key is
deleted from device memory at step 1420. At this stage, the
wrapped app has been launched for the first time on the device
and the steps needed to prepare the device and server for
recovering from a lockout in a secure manner with a desirable
user experience is now complete.

FIG. 15 is a flow diagram showing processes of unlocking
or recovering from a locked app in accordance with one
embodiment. As noted above with respect to FIG. 13, the user
has locked himself out of the app (e.g., forgetting the pass-
phrase, making too many failed attempts to login, etc.) and
needs to unlock the app and establish a new long-term pass-
phrase. The reason the app is locked is because the app secu-
rity keystore on the device is locked and there is no unen-
crypted key on the device to unlock it. In the described
embodiment, the keystore is locked using the recovery key.
Therefore, an unencrypted version of the recovery key is
needed to unlock the keystore, thereby recovering from the
locked app. Only an encrypted version of the recovery key is
on the device. As noted above, this is accomplished in the
present invention through secure data transmissions (between
the server and device) and in a manner that is easy and
intuitive for the user. Recall from FIG. 14, that the device
presently has in memory the recovery passphrase encrypted
using public key(1).

Step 1502 describes the current state on the device. As
noted above, the device has an app security keystore that is
encrypted or locked using the recovery passphrase. Recall
that the recovery passphrase has been encrypted using public
key(1). At step 1504 the user selects a new long-term pass-
phrase for accessing the app, a passphrase that is easy for the
user to remember. In another embodiment, the user may con-
tact customer support of the service provider (e.g., his
employer, financial institution, and the like) to authenticate
himself using any suitable means as selected by the service
provider. In either embodiment, the user selects a new per-
manent passphrase which is not communicated to customer
or user support.

At step 1506 a one-time asymmetric key pair is generated
on the device, referred to herein as public key(2) and private
key(2) which stay on the device. At step 1508 private key(2)
is encrypted using the new, long-term passphrase selected by
the user. At step 1510 public key(2) is encrypted using public
key(1) (sent from the server as part of the wrapped app). At
step 1512 the device creates what may be described as a data
package which includes the encrypted public key(2) and the
encrypted recovery key. The device transmits the package to
the server at step 1514 via any suitable secure transmission
means.

At step 1516 the server decrypts the two individual
encrypted items in the package from the device using private
key(1). Recall that both public key(2) and the recovery key
were encrypted using public key(1) on the device. At step
1518 the recovery key is encrypted using public key(2)
(which the server now has because of step 1514). At step 1520
the encrypted recovery key is transmitted back to the device,
specifically the app.

On the device, at step 1522 the user enters the same pass-
phrase that was selected by the user back at step 1504. Private
key(2) is decrypted on the device using this passphrase at step
1524. Recall that private key(2) was encrypted using this
user-selected passphrase at step 1508. At step 1526 the recov-
ery key is decrypted using private key(2). Recall that at step
1518 the recovery key was encrypted using public key(2) on
the server. At step 1528 the app security keystore on the
device, which is locked causing the user to be locked out of

20

25

30

40

45

50

24

the app, is unlocked using the recovery key. Recall that the
recovery key is not kept in any form on the device (at step
1420 of the app wrapping and initial launch process, the
recovery key was deleted from the device).

At step 1530 asymmetric key pair(2) is no longer needed
and is deleted from the device. Following steps described in
FIG. 14 when a new user passphrase is set up (see step 1408),
at step 1532 a new symmetric key is derived from the new
passphrase entered by the user during the lockout/recovery
process. Finally, the keystore master key is re-encrypted with
the new symmetric key derived from the new user passphrase
and the symmetric key derived from the new device generated
random recovery passphrase.

In the described embodiment, the mobile device may be a
smartphone, tablet, or other mobile device. In other embodi-
ments, the device may be a PC or a laptop. It may also be a
wearable device, such as an Internet-enabled watch, goggles,
glasses, rings, wrist and ankle monitors (e.g., health and
wellness meters), activity trackers or other nomadic Internet-
enabled computing devices. In yet other embodiments, the
device may be any Internet-enabled appliance or system.
Examples include cars that have Internet access, household
appliances (refrigerators, washers, etc.), or HVAC, home
heating/AC systems, or security systems. As noted, the
described embodiment uses mobile devices where users
download apps. However, the present invention may also be
used in other embodiments and contexts.

Another aspect of the present invention describes different
levels of granularity of propagating policies to auser (e.g., an
employee at a company) or to a device such as a device
utilized for work and personal use.

The present level of policy propagation is essentially at the
app level: all copies of a particular app get the same policy
updates. The policies for that app are whatever is hard-coded
in the app. As such they are applied to whoever uses the app
regardless of device or platform.

The first level of extension may be the ability to update or
upgrade policies based on user alone. For example, all apps
for a particular user or employee should have the same poli-
cies. So, all apps for a user’s personal use have the same
policies. Or, another level of extension may be a multiple-
tenancy per app scenario. Here, an app has a group of users
(the “multi-tenancy” aspect) and each user within the group
has certain policies (some users may have the same policies)
for that app. In another embodiment, each user using that app
may get certain policies for a particular device. The deepest
level down with the most extensive or granular provisioning
covers the scenario most likely anticipated by employers or
institutions: for a particular employee using a specific app on
a specific device apply this set of policies, wherein the device
may be an employer-provided device or an employee’s per-
sonal device.

As noted, current app-wrap provisioning is done on a per-
app basis. The service provider console or server operated by
an employer or service provider tracks the initial operation of
someone wrapping an app. For example, the Dolphin browser
is wrapped and this wrapped version is stored in a database
under control of the console. If a user gets a version of the
wrapped app but with different policies (policies that were
applied through a console) or if the user gets a version of the
wrapped app only to be used on an employer-issued device
and not on her own personal device, these different versions
of the wrapped app are not tracked in the console database.
Presently, there is only one app within the console database,
even if the app is subsequently wrapped with different poli-
cies, whether for a different user or a different device. The
console does not track a particular state of the app for a

US 9,396,325 B2

25

particular user. As noted, it would be desirable to have the
console be able to track wrapped apps by user, app, and
device. There is only one version stored in the database and it
is essentially stateless and does not reflect other versions.
This makes it difficult, if not impossible, to use the console to
tie down or associate a particular instance of a wrapped app
with a particular user, group of users, a device, an employer,
and so on.

In one embodiment, finer granularity uses the lockout/
recovery protocol described in FIGS. 12-15 (used in a differ-
ent context to authenticate a user and to obtain a recovery
key).

Presently, there is nothing to link a keystore on a device
with a wrapped app or to tie a user with an instance of a
wrapped app. Methods and systems for tying an app to a
particular user are described. As noted, it is possible to tie an
app to certain data and policies. Using the lockout/recovery
protocol, it is possible to determine who authenticated them-
selves with an employer and from this, the employer can
provision the employee’s app with policies assigned to that
employee.

Currently, app security wrapping is integrated with app
provisioning. In one embodiment of the present invention,
when a service provider handles provisioning for a particular
employer, this is done on a server different from the server
that performs the actual security wrapping of the app. In this
manner, the security wrapping of the app is separate from app
provisioning.

In one example, an employer has one generic, wrapped
app. An employee downloads the generic wrapped app onto
her mobile device. However, the wrapped app is not provi-
sioned with policies and, as such, cannot be utilized until
provisioning is done. The employee may then contact the IT
department. The employee authenticates herself to the
employer and asks the I'T department to provision the app on
her tablet with the policies that she is supposed to have. These
policies are retrieved by I'T, or the employee may tell IT which
policies she should have.

The IT may then securely obtain the actual policies for the
employee requesting app provisioning. In this manner, the
wrapped app is provisioned on a separate server.

In one embodiment, a generic wrapped app may have all
policies offered by an employer but with none of the policies
activated. For example, the wrapped app may not have a
configuration file instructing which policies are to be “turned
on” for that user. As such, when the app starts, one of the first
steps taken by the app is ensuring that it has a configuration
file that it can trust. That is, the configuration file is one that
was securely obtained from the employer. Methods described
below show how that policy configuration file can be obtained
securely and not tampered with.

FIG. 16 is a flow diagram of a process for unlocking a
keystore and allowing a user to execute an app in accordance
with a preferred embodiment of the present invention.

At step 1602 an employee downloads a wrapped version of
an app that may be characterized as generic in that at time of
downloading and installation on the device, the app is not
customized in any manner for a specific device or user.

The first time the wrapped app starts, it recognizes that it
has not yet been provisioned for the user (the user does not yet
have a user-specific section in the keystore) and prompts the
user to select a passphrase.

At step 1604 the app prompts the user to select a pass-
phrase; that is, the user decides what passphrase she wants to
use for unlocking the app going forward.

Atstep 1606 a keystore which has a user section and a table
of content (TOC) is created on the app protection server.

35

40

45

50

55

60

65

26

Once the user selects and enters the new passphrase, a
challenge/response protocol is initiated or triggered. At step
1608 the protocol delivers (from the app protection server) to
the device (or, more specifically, the app) part or all of the
keystore that is customized for the specific app/user/device.

At step 1610 the user and device-specific (policy) files are
embedded into the user section of the app keystore on the app
protection server. In one embodiment, some or all of the
keystore files (e.g., the policy files) are hashed and the hash
values are stored in a TOC file at step 1612.

At step 1614 the TOC file on the app protection server is
hashed. The cleartext version of the TOC files remains. In
another embodiment, a TOC file is not used. Instead, hash
values of the keystore files from step 1612 are used, as
described in step 116.

At step 1616 the user-selected passphrase from step 1604 is
combined with TOC file hash value from the previous step to
create a master passphrase for the initial keystore created on
the app protection server at step 1608.

At step 1618 the resulting partial or complete keystore on
the server is transmitted to the app on the device. At step 1620
the partial or complete keystore is installed in the wrapped
app.

Atthis stage the first stage of downloading the app, creating
the keystore, and installing the keystore in the wrapped app is
complete. At this stage, the app resides on the mobile device
and is waiting to be executed by the user.

At step 1622 the user executes the wrapped app by entering
the user-selected passphrase selected at step 104. At step 124
the wrapped app itself hashes the TOC file in the keystore.
The wrapped app combines the passphrase just entered by the
user (selected by the user at step 1604) with the hash of the
TOC file created at step 1624 to create a master passphrase for
unlocking the keystore.

At step 1628 the wrapped app determines whether the
master passphrase unlocks the app’s keystore. If it does not,
the user may have entered the wrong passphrase or the master
passphrase is incorrect as indicated at step 1630 which
implies that the TOC file has been tampered with or is cor-
rupted. If the master passphrase does unlock the keystore,
control goes to step 1632 where the wrapped app hashes the
keystore files. The app then verifies that the keystore files
have not been modified. It may do this by comparing the hash
values with the hash values of the keystore files created at step
1612. If the app can verify that the keystore files have not been
modified and that all relevant files have passed tamper detec-
tion, control goes to step 1634 where the user is able to use the
wrapped app in a normal manner using the passphrase she
selected at step 1604.

FIG. 17 is an alternative method of separating the opera-
tions of wrapping an app on one server and provisioning the
app on a different server in accordance with an alternative
embodiment. In this embodiment, at step 1702, auser’s initial
keystore is created on an app protection server (referred to as
“server A””) which may not necessarily be the same server that
does the actual app security wrapping. However, preferably
this server is different from the app provisioning server (re-
ferred to as “server B”). A chain of trust is maintained by the
app protection service provider, such as an employer, on each
passphrase update by the user on the device. At step 1704
server A embeds user-specific and device-specific informa-
tion into a user section of the wrapped app’s keystore. For
example, each user may have their own public key, their own
policies file, and so on, stored in this user section.

The app protection server (which has the user keystore) has
data on all of the files that should be present in the user section
of the keystore. At step 1706 the server hashes each of these

US 9,396,325 B2

27

keystore files and uses one or more of the hash values as one
of the inputs for creating the user’s initial recovery pass-
phrase.

In one embodiment, a hash value is combined with a ran-
dom string. At step 1708, the first time a user logs into a
wrapped app, the app detects that the user does not yet have a
user section in the keystore. In another embodiment, the user
selects an initial passphrase and this is sent to the app protec-
tion server. This passphrase may be combined with a hash
value of files that the user (or employer) wants to protect. The
resulting value from this combination is the combination of
the user’s selected passphrase and a hash value that is gener-
ated transparently. In this manner, the passphrase is not
merely a randomly generated string.

At step 1710, a challenge/response protocol described
herein for recovering a passphrase and unlocking a device is
used for an unlock operation to restore access to a keystore on
the device. During this process, in one embodiment, a server
which may be the app protection server or the provisioning
server, or yet a different server, creates a keystore for the user
based on the user’s privileges as defined, for example, by an
employer. At step 1712 the encrypted recovery passphrase is
sent to the device or app along with a new user block for the
keystore that contains an initial “recovery” passphrase (inone
embodiment, the passphrase does not actually recover any
data), a second recovery passphrase, DAR (“data at rest”)
keys, a policy file, and other user-specific files that may be
needed. This user keystore section may be pushed to an app
dynamically after the wrapped app is installed on the device.

Atthis stage, at step 1714, the user follows a procedure for
unlocking a locked, wrapped app following a challenge/re-
sponse protocol. The user enters the unlock passphrase that
she selected at the beginning of the app wrapping and instal-
lation phase (i.e., the app unlock passphrase used by a user to
unlock an app). As described above, the user device receives
an initial keystore that has been populated with all data and
files needed by the user (e.g., keys, recovery passphrase if
desired, and the like). The keystore is encrypted with a pass-
phrase that, as noted above, was generated by combining a
passphrase selected by the user at the start of the process and
the hash values of files that must be protected from tampering.
In one embodiment, the wrapped app first hashes the user-
specific files (policies, etc.) and uses those hash values as one
of the inputs to the key derivation function. If any of those
files have been modified or tampered with, the keystore will
not unlock. At this stage the process is complete.

FIG. 18 is a block diagram showing a mobile device and an
app protection (wrapping) server in accordance with one
embodiment. A mobile device 1802 is in communication with
a server 1804 via the Internet or a cellular network. Mobile
device 1802 has an app on it that is generic or non-provisioned
(i.e., hasnopolicies associated with it yet). A user is prompted
to enter a passphrase 1808 that the user selects. App 1806 also
has a keystore 1810.

Server 1804 (referred to as “server A” herein) creates key-
store 1810 which has several components. One may be
referred to as a user section 1812 which contains user dataand
device-specific data as described above. A TOC 1814 con-
tains hash values of keystore files, such as files in user section
1812. Also stored in keystore 1810 is a hash value 1816 which
is the hash of TOC 1816. Keystore 1810 also stores a master
passphrase 1818 which is comprised of hash value 1816 and
user-selected passphrase 1808, as described above. Keystore
1810 is then transmitted from server 1804 to mobile device
1802 and stored in app 1806.

Once the user has the initial keystore, they can unlock and
use it normally by entering their passphrase. The app security

10

15

20

25

30

35

40

45

50

55

60

65

28

wrapping code is responsible for hashing the user’s files and
transparently combining the hash with the user-provided
passphrase. The resulting “big” passphrase is then used to
unlock the keystore.

Any subsequent passphrase update by the user on the
device requires the wrapped app to successfully hash the
protected files in the keystore before the user’s updated pass-
phrase is accepted. Those same hashes are then added trans-
parently as inputs to the key derivation function for the new
updated passphrase. A “chain of trust” is maintained because
no new passphrase can be created that does not use a verified
version of those files. If an employer or an app security
service provider wants to push new policies out to an
employee or user, then the keystore is locked for the user and
requires the user to perform the unlock/recovery procedure.
In one embodiment, there is a way to time out an app or force
an app to check in with either server A, server B, or another
component, at some point in the process. In this manner, file
hashes are used as part of the keystore passphrase because it
enables verifying runtime files without intervention from the
user or burdening the user with extra steps. Moving the key-
store creation process off the device and onto a trusted, app
protection server enables the start of a trust chain starting with
the initial file hashes.

By moving the keystore creation off the app and onto a
trusted remote app protection server (e.g., server A), the
attack surface of an app is reduced. It is more secure and under
control of an employer or app security service provider,
thereby mitigating damage if the device is jail broken or if a
hacker “snoops” around on the device. Apps are also made
more secure by having a keystore initial passphrase created
on a trusted app protection server and having all subsequent
passphrase updates linked to the same chain of trust described
above. The initial passphrase in this context is a combination
of a user-selected passphrase and a file hash.

Part of the lockout and recovery protocol could involve
sending the target device’s ID to the app protection server
(server A) so that it can be used as one of the inputs to the key
derivation function. The target device ID may be the DID or
UDID of the device or another technique may be used to
uniquely identify the device, all of which would serve the
purpose in this context. This ties the keystore to a specific
device and creates barriers to someone attempting to crack the
keystore on the device. These barriers play a more important
role in Apple’s i0S context if an i0S CPU internal key is used
to indirectly generate a pseudo-device identifier. Android has
a feature that can be used to securely store a unique key on a
device known as the Trusted Execution Environment (TEE).
As such, in another embodiment in which Android devices
are used, TEE may be implemented to securely store keys on
a device.

Following this method, an app is provisioned with policies,
an initial keystore via an out-of-band procedure based on the
challenge/response protocol and, optionally, a recovery pass-
phrase.

As described above, the keystore is a secure memory loca-
tion on a device, essentially a device-level vault. Once a user,
typically the owner of a device, authenticates herself to the
device, then the user can store data, such as keys (e.g., a
back-up recovery passphrase), generic data blocks (“blobs™),
and the like, in the keystore, in an encrypted format. As noted,
in one embodiment a more secure keystore is implemented in
which the service provider or the employer has more control
of keystore creation and operation. In one embodiment, the
keystore uses a randomized initial vector (random seed). The
user is able to read and write generic data blocks or “blobs” in
the keystore. In one example, there may be a policy that states

US 9,396,325 B2

29

that the user is not allowed to use, as a current passphrase any
of'the user’s last n passphrases. In order to enforce this policy,
hashes of the last n passphrases are stored so the device can
check to see if the user is re-cycling recently used pass-
phrases. When a user selects a new passphrase, the hash of the
new passphrase is compared to the previous passphrase
hashes. This is more secure than storing the actual passphrase
history. In another embodiment, hashes are not taken of the
last n passphrases. The comparison is done of the actual
values. Other data may also need to be stored such as the date
the last passphrase was changed. In one embodiment, these
data are encrypted and stored in the keystore.

In another embodiment, there may be multiple passphrases
to open specific portions of the keystore, such as user-specific
areas. For example, there may be multiple DAR keys for the
same keystore on a device, thereby supporting multiple ten-
ants or login accounts for the same wrapped app, a higher
level of granularity than enabling multiple users at the device
level. For example, if one user logs into a device that supports
multiple users (i.e., has logins for) and opens a wrapped app,
such as a wrapped browser app, a second user (one who has
not logged into the device which still has the first user logged
in) can open and log in to the same wrapped browser app
under the second user’s login account. The second user can
use the browser app under the second user’s profile while the
first user uses it under the first user’s profile. As such, difter-
ent versions of the same wrapped app can be used on a device
regardless of device-level login, that is, regardless of which
user initially logged onto the device. Depending on the pass-
phrase used to login to the wrapped app, a user will get a
specific DAR key x which would access certain portions of
the keystore. Thus, by using multiple DAR keys two users
sharing the same tablet and using the same security wrapped
app would only see their own data with respect to the app. In
another example, one user may have two different logins, one
for personal use and one for work. Depending on which login
account the user uses, a specific profile execute and the user
can only access certain data (such as only work or personal
data, but not both under one profile).

In another embodiment, apps that were not originally
intended for multi-tenancy or multi-profile or have no internal
implementation or structure for these features may be modi-
fied to include these features. However, these features can be
implemented in the keystore itself. The wrapped app can be
provisioned using different profiles. For example, an app may
have a profile for a user that enables certain features during
work hours or while the user is physically at work, such as
copy and paste privileges. Outside those hours or a specific
physical location (e.g., a building), a different profile is used
for the same user that disables those features.

Although the content of files in the keystore are encrypted,
certain file names themselves are not encrypted in the key-
store of the present invention, while other file names are
encrypted. For example, files that live in the app security
provider program keystore (which may reside on server A)
may have encrypted file names. However, encrypted files that
are stored outside of the keystore may not have encrypted
names. For example, if a user creates a document and stores it
in an app’s “Documents” folder or inside the app sandbox,
that file will be encrypted but may not have an encrypted
filename. However, the user’s key files are encrypted in the
keystore and their filenames are also encrypted. Encrypting
file names not only provides additional security, but also
allows for multiple login and multi-tenancy features for an
app. The file names can be encrypted using a key derived from
a user’s passphrase. As described above, a passphrase is
entered into a key generator, a key is generated and used to

30

40

45

50

55

30

encrypt the file data and the file names. In another embodi-
ment, two sets of keys are used for the encryption, one for the
file content and the other for the file names.

In other words, the extensible keystore architecture of the
present invention supports multiple, concurrent passphrases
(for multiple users or a single user with multiple profiles) and
multiple DAR keys without conflict. Using this structure, a
wrapped app is enabled to support multiple accounts. For
example, a user could use one passphrase to log into an app
while in a work environment and a second passphrase to log
into an app while in a home or personal environment. Using a
secure Web browser again as an example, a user could have
different proxy settings, bookmarks, and history for the same
browser app depending on which passphrase was used to log
into the app. Another example or use case involves multiple
employees sharing the same device. Each employee may have
his or her own passphrase and associated set of files within the
app.

As noted above, a portion of the keystore is generated on
server A and pushed to the device. This enables better han-
dling of files that are not in the app and are not in executable
form.

Presently, the user or employee selects a passphrase that is
used to create a keystore on the device. However, this is not a
trustworthy way of creating or managing the keystore
because all operations (selecting passphrase, creating key-
store, etc.) are done on the device itself. This is not preferred
because these operations occur in an untrustworthy environ-
ment. It should not be assumed that the first person to run the
app is trusted and is the user for whom the app was intended.
In other words, until the intended user runs the app and picks
a passphrase, the app is in a vulnerable state and can be used
by anyone who gets to it first.

As such, a more secure way to generate a keystore is to
generate it on the server (not on the device) and have it pushed
to the device. In this embodiment, the app cannot run until the
intended user initiates a provisioning request, is authenticated
by their employer, and receives the necessary files from their
employer. In an alternative embodiment, the server may
select the passphrase. However, the user must then be
informed of the initial passphrase in a secure way. In the
embodiment described above, the user picks the initial pass-
phrase so there is no need to communicate it back to the user
through an insecure channel.

As noted, another issue that arises is protecting a file that is
not in the app package or bundle. This issue may arise when
an employer wants to change, revoke, or upgrade a policy for
an employee. Presently, files are protected against tampering
by hashing the files and injecting the hashes into an app
security provider library in the app’s bundle (package con-
taining the executable and other files). This requires having to
insert the file into an executable for the entire new application
with changes injected into the executable. Files or file hash
values are not injected into an app executable. This method
has the limitation that only files that are known at the time of
wrapping can be protected.

In one embodiment, all files are hashed and injected into a
library in the app itself. In one embodiment, a special file is
created in the keystore. This file may be referred to as a
table-of-content (TOC) file. It contains a list of all files that
should be protected and the hash values of each of those files.
The important feature of the TOC file is that it is trusted. By
checking the hash values, it is possible to see if anything in
those files, which are in the app bundle, was changed. Two
important steps take place: the TOC file is hashed and a
keystore, or a portion of a keystore, is generated on a server
that is trusted. In this manner, the server knows what the

US 9,396,325 B2

31

content of the TOC file should be and, if the server uses a hash
of'the TOC as part of the passphrase, then the user may enter
a passphrase on the device which, in one embodiment, is the
hash of the TOC and user’s passphrase. If the TOC file is
altered, the user is denied access. If the file changes, then the
hash is different and access to the keystore is blocked. Login
will fail if the TOC is modified. In this manner, it is possible
to control updates made to the keystore, make updates to user
policies, and maintain a train of trust for policy updates. This
makes it possible to update policy files during runtime of the
app on the device.

FIGS. 19A and 19B illustrate a generic computing system
1900, such as a mobile device, suitable for implementing
specific embodiments of the present invention. Some of the
devices that can be used in the present invention may have
other features or components that are not shown in FIGS. 19A
and 19B and not all the components shown in these figures
(e.g., the keyboard) are needed for implementing the present
invention. As such, FIG. 19A shows one possible physical
implementation of a computing system as this term is broadly
defined.

In one embodiment, system 1900 includes a display or
screen 1904. This display may be in the same housing as
system 1900. It may also have a keyboard 1910 that is shown
ondisplay 1904 (i.e., a virtual keyboard) or may be a physical
component that is part of the device housing. It may have
various ports such as HDMI or USB ports (not shown). Com-
puter-readable media that may be coupled to device 1900 may
include USB memory devices and various types of memory
chips, sticks, and cards.

FIG. 19B is an example of a block diagram for computing
system 1900. Attached to system bus 1920 is a variety of
subsystems. Processor(s) 1922 are coupled to storage devices
including memory 1924. Memory 1924 may include random
access memory (RAM) and read-only memory (ROM). As is
well known in the art, ROM acts to transfer data and instruc-
tions uni-directionally to the CPU and RAM are used typi-
cally to transfer data and instructions in a bi-directional man-
ner. Both of these types of memories may include any suitable
of'the computer-readable media described below. A fixed disk
1926 is also coupled bi-directionally to processor 1922; it
provides additional data storage capacity and may also
include any of the computer-readable media described below.
Fixed disk 1926 may be used to store programs, data and the
like and is typically a secondary storage medium that is
slower than primary storage. It will be appreciated that the
information retained within fixed disk 1926, may, in appro-
priate cases, be incorporated in standard fashion as virtual
memory in memory 1924.

Processor 1922 is also coupled to a variety of input/output
devices such as display 1904 and network interface 1940. In
general, an input/output device may be any of: video displays,
keyboards, microphones, touch-sensitive displays, tablets,
styluses, voice or handwriting recognizers, biometrics read-
ers, or other devices. Processor 1922 optionally may be
coupled to another computer or telecommunications network
using network interface 1940. With such a network interface,
it is contemplated that the CPU might receive information
from the network, or might output information to the network
in the course of performing the above-described method
steps. Furthermore, method embodiments of the present
invention may execute solely upon processor 1922 or may
execute over a network such as the Internet in conjunction
with a remote processor that shares a portion of the process-
ing.

In addition, embodiments of the present invention further
relate to computer storage products with a computer-readable

10

15

20

25

30

35

40

45

50

55

60

65

32

medium that have computer code thereon for performing
various computer-implemented operations. The media and
computer code may be those specially designed and con-
structed for the purposes of the present invention, or they may
be of the kind well known and available to those having skill
in the computer software arts. Examples of computer-read-
able media include, but are not limited to: magnetic media
such as hard disks, floppy disks, and magnetic tape; optical
media such as CD-ROMs and holographic devices; magneto-
optical media such as floptical disks; and hardware devices
that are specially configured to store and execute program
code, such as application-specific integrated circuits
(ASICs), programmable logic devices (PLDs) and ROM and
RAM devices. Examples of computer code include machine
code, such as produced by a compiler, and files containing
higher-level code that are executed by a computer using an
interpreter.

Although illustrative embodiments and applications of this
invention are shown and described herein, many variations
and modifications are possible which remain within the con-
cept, scope, and spirit of the invention, and these variations
would become clear to those of ordinary skill in the art after
perusal of this application. Accordingly, the embodiments
described are to be considered as illustrative and not restric-
tive, and the invention is not to be limited to the details given
herein, but may be modified within the scope and equivalents
of'the appended claims.

What is claimed is:

1. A method of installing a keystore in an app on a mobile
device, the method comprising:

prompting a user to select a passphrase for the app;

creating an app keystore with a user section and a table of

contents (“TOC”) on an app protection server;

hashing keystore files, thereby creating a first keystore files

hash value on the app protection server;

storing first keystore files hash values in the TOC;

hashing the TOC, thereby creating a TOC hash value;

combining the passphrase with the TOC hash value;

creating a first master passphrase for the keystore created
on the app protection server from the combined pass-
phrase and the TOC hash value;

linking subsequent passphrase updates to a chain of trust

including steps of said hashing of the TOC and said
hashing of keystore files;

transmitting the keystore from the app protection server to

the app on a device, wherein an attack surface of the app
is reduced by having creation of the keystore on the app
protection server; and

installing the keystore in the app.

2. A method as recited in claim 1 further comprising:

embedding user and device specific policy files into the

user section of the app keystore on the app protection
server.

3. A method as recited in claim 1 further comprising:

upon execution of the app on the device, hashing a user

section ofthe TOC in the keystore creating a user section
TOC hash value, wherein said hashing is done by the
app.

4. A method as recited in claim 1 further comprising:

combining the passphrase with user section TOC hash

value to create a second master passphrase.

5. A method as recited in claim 1 further comprising:

hashing the keystore, thereby creating a second keystore

files hash value.

6. A method as recited in claim 5 further comprising:

comparing the second keystore files hash value with the

first keystore files hash value.

US 9,396,325 B2
33 34

7. A method as recited in claim 1 wherein a cleartext
version of the TOC is maintained.

8. A method as recited in claim 1 further comprising:

initiating a challenge and response protocol.

#* #* #* #* #*

